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1.0 Introduction.

Prediction methods based on in'obability density fum'ti, ms {pdfs) have played an imI)_rtant

role in turbulent c(mlbusti(m for sonic time. The interacti(m ,_fmixing and chemical reacti(ms

is an important factor in determining the perfi_rmance ()f practical coml)ustion devices. I,t

the special application of the SS.XIE pre-1)urner, this interaction can affect the internal fluid

mixing and as a result significantly alter the exit temperature profile. To fldly anticipate

the effect of the interaction of mixing and c(mll),tsti(m reactions in a design t)rocess requires

extensive research in turbulent coml)usti(ni in a range of Mach numbers relevant fl_r the

applications. The aim of this effort is to develop accurate prediction methods.

Prediction methods for turbulent reacting; fl,_ws (levelol)ed in analogy to nonreacting

flows were based (m statistical moments (_f first and sec(md order. The mean value of den.',ity

(and other thermodynamic variables) were determined using an assumed titan fi_r the pdf ()f

the scalar varial)les describing the local thermodynamic state. This approach is acceptal_le f(,r

reacting flov,,s if only the expectations of the stal)le species and temperature and density are _)f

interest and where the reactions are so fast that equilil)rium is achieved. It is well known that

assumed forms of the pdf are not flexible enough t() represent truly the variation ()f the p(lf

occurring in a turl)ulent nonhomogeneous flow with finite rate chenlistry (I{ollmaml and Che,l.

1992). Hence. metlmds employing the pdf directly have been developed for turlmlent reacting

flows (Pope. 198,.5. Kollnmnn. 1990). They have several significant advantages, n_tably the

ability to deal with the highly nonlinear source terms arising in combustion rigorously in

dosed form. The aim of the present project were the analysis of pdf methods and the

development of closures h:_r mixing and turbulent transport of single point pdfs in comp,essible

and incompressible flows.

The main parts of the project were the analysis of the fomidations of pdf nleth(_(Is



including the recent development of mapping closures (Chen et al. 1989). The closure m(_(lels

for turbulent mixing were analyzed in detail and pdf meth()ds were extended t() ccmlpressil)le

turbulent flows. Tile al)plication of a particular l)df meth(M t() supers(_nic turlmlent jet flames

burning hydrogen with air was used as a test case t() evaluate the closure model.

2.0 Objectives.

The objective of the prol)osed research project was the analysis ()f single I)oim ch)sures lm._e(l

on pdfs and characteristic flmcti(ms and the develol)ment of a prediction method for the joint

velocity-scalar pdf ill turbulent reacting flows. Turbulent flows of boundary layer type and

stagnation point flows with and without chemical reactions were be calculated as principal

applications. Pdf methods for compressible reacting flows were develoI)ed an(1 tested in

comparison with available experimental data.

3.0 Research work.

The research work carried in this project was concentrated on the closure of l)(lf eqnati()ns

for incompressible and compressible turbulent flows with and without chemical reacti()ns.

3.1 Foundations of pdf methods.

The single point pdf equations, which are the central part of the prediction methods fi,r

turbulent reacting flows, can be deduced from the exact and closed transport equation for the

characteristic flmctional containing all the statistical information on the complete flow field.

The result of this derivation is the equation for the characteristic function, corresponding via

Fourier transformation to the single point pdf. It follows that two equivalent fornmlations

of single and nmlti-point pdf equations emerge as a consequence of the flmctional equaticm

at special argument flmctions composed of Dirac-pseudofunctions. All nonclosed terms can

.-)



be given in terms of the characteristic fluiction (_r pdfs and closure nl_dels can 1)e set Ul) in

either formulation. This fact can be explc_ited t<) ()l_tain equivalent expressions f<)r a cI()suie

model. For instance, it turns out that the exact niixing tel'In and. tlieref_re, the i)air-exchangr

model for it in the single point pdf equation, has the pr_)perty to increase the width of the

characteristic function (analogous to a randoni I)l(_c_ss with positive diffusivity f_)r the pdf) as

turbulence decays, since the limit of zero fluctuations is given by unity as Fcmrier transf()rln _f

the Dirac spike fi)r the pdf. The detailed discussion (_f these results can be found in appendix

I.

3.2 Interaction of Turbulence and Chemical Kinetics.

The objective of this part of the project is t(, prm'ide a fmidaniental understanding of the

physics inherent in various processes causing turbulence to interact with chemical kinetics.

In view of the ilnp_rtance of various practical conllmsti_nl processes that occur in turlmlent

flows, the emphasis is put on the influence of turbulence on cheniical kinetics.

The interaction of turbulence and cheniical reactions occurs in turbulent reacting flows

over a wide range of flow conditions. Various degr_'es of interaction between turbulence and

chemical reactions can lead to different phenoniena. Weak interactions between turbulence

and chemical reactions may simply nlodify the flame slightly causing wrinkles of flanie surface

(Williams, 1989). Strong interactions could cause a significant niodification in b_)th the

chemical reactions and the turbulence. If cheniical reactions cause small density changes in

the flow, then the turbulence is weakly affected by the chemical process, but the turbulence

may still have strong influence on the cheniical reactions. However, the purpose (ff combustion

is generating heat: therefore, one expects large density changes (i.e.. an order of magnitude)

which can alter the fluid dynamics significantly.

The research wt_rk was aimed at the investigation of mean reaction rates in lionl_rein

ixed systems. Rigorous bounds were estal_lished fi_r the niean reaction rates in binary and



multi-component mixtures for given fluctuatiim levelsof ccnnl)( )sit i, ,n and teml)erat,u'e. The'

combustion of methane with air was used as all application _f the i)redicti(nl m_del ilic_n-

porating finite rate chemistrv. Mixedness 1)aramete'rs were evaluated and the 1)_mnds rnl the

reaction rates were verified. The main c, nwlusi_nx was that the quasi-laminar calculati_n (_f

mean reaction rates is unacceptable if unconditional mean values are used. The details can

be found in appendix II.

3.3 Mapping methods for pdf equations.

A new approach for the closure of pdf equations was suggested by ICraichnan (Chen et

al., 1989) during the grant period and an investigation of the apt)licability of mapping closures

to turbulent combustion problems was undertaken. I{raichnan's idea to apply mapl)ings as

tool in constructing closures for pdf equations ( ('hen et al. 19S9, I,:raichnan 1990. Feng 1991.

Pope 1991, \'alifio et al. 1991 ) proved very successfld fi_r the ca_'e of a single scalar varial)le in

homogeneous turbulence. It was not clear how powerful this approach is fi_r the case _f m,_re

than one variable (Pope. 1991). Pope's (1991) method relies on the cunmlative distrilmti_m

function and the representation (ff the pdf of , > 1 random varial)les as the ln'o(luct of ,

conditional pdfs. The resulting closure is, therefore, dependent on the ordering _f the ,

variables appearing in the conditions. The investigation of mapping nlethods in the c.ntext

of the present project lead to the important result, that the use of the cumulative distrilmtion

function can be avoided altogether and that the mapping equati(nls can be established directly

using the pdf equation. No particular ordering of the variables is required. The detailed

results are presented in appendix III.

3.4 Prediction of supersonic turbulent flames.

The prediction of turbulent supersonic nonprenfixed flames was the central part of the
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present project. The effectsof compressibility, tile interacticm with tmld<ml .,h_,'ks,'r_'_tedin

the turbulent zoneand shockscreatedoutside the turlmlent z_mearecr_u'ial t_ the s_tccessful

prediction of compressibleturbulent flows. Pdf meth_ds can l_eadapted t_ deal with these

phenomenaand a detailed investigati<mint,, pdf formulati(ms f(,r COml>ressibler,'acting fl(_ws

wascarried out. It wasfound that evenfor equilibrium chemistry at least threescalarva1iables

are necessaryto fix the local thermodynamic state. In fact, it is advantage_mst()ccmsider

a fourth scalar to obtain a pdf equati<mwith the familiar structure. ('ompres.ql_ility effects

are dealt with using the generalized Langevin apln'(mch. A pdf closure including mixture

fraction, the logarithm of the (dimensionless)density, the internal energy per unit massand

the relative rate of volume expansionwasestablished. The supersonicflamesof Evanset al.

(1978) were used as test casesand severalsuccessflll runs were carried out. The results are

presnted in detail in appendix IV.
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Abstract. Probability density function (pdf) methods provide a complete statistical description of

turbulent flow fields at a single point or a finite number of points. Turbulent convection and

finite-rate chemistry can be treated in closed and exact form with pdfs in contrast to methods

based on statistical moments. The equations for pdfs at a finite number of points are indetermi-

nate due to molecular transport and pressure-gradient terms which require pdfs of higher order.

The theoretical foundation of pdfs methods are developed in this paper starting from the exact

and linear equations on the functional level. The closure problem for single-point pdf equations is

treated in detail and several closure models are analyzed. Turbulent combustion at low Mach

numbers constitutes an important area of application and selected results for a turbulent methane

flame are presented as an example. The extension of pdf methods to supersonic turbulent flows

with and without chemical reactions are outlined. Progress in the numerical solution of pdf

equations is reviewed briefly. In the concluding remarks, both the advantages and disadvantages

of pdf methods are evaluated.

1. Introduction

Significant progress has been achieved over the last 10 years in the theory and application of

evolution equations for probability density functions (pdfs) to turbulent flows at low Mach numbers,

Pope (1985) reviewed the development up to 1985 and provided a detailed introduction to this

subject. The present paper is concerned with the theoretical foundation and recent development of pdf

methods. Pdf methods derive their justification from the basic fact that turbulent convection and

chemical reactions can be dealt with in exact and closed form. This is in stark contrast to the

approach based on statistical moments, which requires closure moders for nonlinear processes such as

convection or chemical reactions. Pdf methods succeed here because they transform certain nonlinear

processes into linear terms with variable coefficients by converting the associated dependent variables

in the basic laws into independent variables of the pdf. Hence, two of the most important closure

problems encountered in moment equations are overcome by pdf methods. Furthermore, pdfs provide

a complete statistical description of the fluctuations at a single point or a finite number of points in

the flow field. However, the equation governing the evolution of the pdf at n points is indeterminate,

because the terms accounting for molecular transport and the fluctuating pressure gradient require the

pdf at n + 1 points. The closure problem for these two terms must be overcome to arrive at a

determinate equation. The numerical solution of pdf equations was for some time considered next to

1This research was supported by NASA Lewis Grants NAG 3-667 (T. Van Overbeke project monitor and NAG 3-836

(R. Claus project monitor) and by a grant from the Spanish Ministry of Education (CAICYT) during the authors stay at the

University of Zaragoza in 1985 1986).
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250 W. Kollmann

impossible, rendering the interest in pdfs academic. However, stochastic simulation techniques pio-

neered by Pope (1985) proved very successful for homogeneous and nonhomogeneous flows (in parti-

cular the parabolic type). The reason for the difficulty in the numerical solution of pdf equations is the

large number of independent variables of the pdf in contrast to moment methods, which may consist
of a large number of equations governing functions of a few independent variables. The reason for the

success of stochastic simulation techniques is the fact that the numerical effort grows only linearily

with the number of independent variables. As a consequence, a variety of turbulent flows ranging
from incompressible turbulent shear layers (see Pope, 1985; Kollmann and Wu, 1987; Haworth and

Pope, 1987) to turbulent reacting flows with strong density fluctuations and finite-rate chemistry
(Pope and Correa, 1986; Jones and Kollmann, 1987; Chen et al., 1989) can now be computed with

pdf methods.

The aim of this paper is to provide a detailed discussion of the theory and application of pdf

methods. In Section 2 the basic laws governing the flow of Newtonian fluids are set up first in the

Eulerian and the Lagrangean frame for later reference. Then the exact and linear equations for the

characteristic functionals in Eulerian and Lagrangean frames are discussed. They form the theoretical

basis for pdf and moment methods. Pdf equations in both the Eulerian and the Lagrangean frames

are then derived as Fourier transforms of the equations for the characteristic functions, which follow

from the exact equations on the functional level. The case of the single-point pdf equation is the

primary focus of the subsequent sections. In Section 3 the possible formulations for the nonclosed

terms in the pdf equation are discussed first. Their properties are assessed and the closure models for

the molecular-transport and the fluctuating pressure-gradient terms are reviewed. Single-point pdf

equations do not provide information on turbulent length or time scales. Hence, methods of incorpo-
rating scale information are introduced in order to complete the prediction method. Section 4 is

devoted to the application of pdf methods and their extension to new areas. The most important

applications are turbulent combustion flows. The example of a turbulent nonpremixed methane flame

is presented in some detail to verify the power of pdf methods. Then the extension to supersonic flows

and the interaction of turbulence with shock waves are discussed along with directions for future

research. The numberical-solution method was presented in detail in Pope's (1985) review article.

Hence, only the most recent developments are discussed briefly in Section 5. Finally, in Section 6

conclusions are drawn for the theory and application of pdf methods.

2. Theoretical Background

The analysis of turbulent flows is restricted to Newtonian fluids in the gaseous phase for which the

thermodynamic relations for ideal gases are assumed to hold. The basic laws of physics are assembled
first in an appropriate form for later use. Then it is shown that pdf methods are part of a

general framework for the treatment of turbulent flows on the functional level. This functional

formulation is discussed briefly and the pdf-transport equation is derived from it.

2.1. Basic Laws

The thermodynamic state of a flowing mixture of ideal gases is locaUy specified if the composition and

two independent (intensive) thermodynamic variables and velocity are known. The values for this set

of variables are governed by the balance laws for mass, momentum, and energy and the thermodyna-

mic state relations for ideal gases. The balances can be set up in several frames: we consider their
form in the Eulerian frame, where the flow is observed at an arbitrary location in the flow field, and

the Lagrangean frame, where the flow is observed following an arbitrary material point of the fluid.

The independent variables for the Eulerian frame are thus the observer position x and time t, whereas

for the Lagrangean frame the label variable a and time t are used. The usual choice for the label a is

the position of the material point identified by a at the reference time zero. The position of a material

point in the Lagrangean frame is denoted by X(a, t) and serves as transformation between the frames

x = X(a, t), a = X-_(x, t),

where X -1 denotes the position at time zero of the material point, that is at position x at time t
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(uppercase letters indicate dependent variables in the Lagrangean frame and lowercase letters are used

for the Eulerian frame). If the mapping X and its inverse X -_ are twice continuously differentiable,

then the partial derivatives in the Eulerian frame can be transformed into the Lagrangean frame and

vice versa. The gradient, for instance, transforms according to (Euler relations (Truesdell, 1954))

c_ 1 _X_ OX_ d

and

J dX#-1 t0Xf 1

_a, = 2 _=_%_' Ox, Ox,o _.xo' (2)

where J denotes the Jacobian determinant

_X_ c_X_ _X_, (3)1

J = g_p_%_,o ga_ gap ga_,

(Note that repeated subscripts imply summation and that e,a_, is the permutation tensor.) Repeated
application of (1) or (2) leads to transformation formulae for second and higher derivatives. We will

need in particular the relation for the Laplacian, which is given by

1 c_X;c3X_, 0 (1 _X_X, _? )Ax = _e=_;,e_,_, _a. _?ao>_-a_ J ?,at_ _a_, _a_ " (4)

The time derivative in the Lagrangean frame plays a fundamental role, because velocity and acceler-

ation are by definition given as

v,(a, t) - \ _t/.'

It transforms to the Eulerian frame according to

(0)(') oa = _ x + v:(x, t)--x= =- Dt (5)

which is called the substantial or Stokes derivative. The transformation rules (1)-(5) enable us now to

set up the basic laws in both frames.

Mass Balance. Mass is conserved and this statement translates into

g_ + (pv=) = 0 (6)

for the Eulerian frame, where p(x, t) denotes the density. Transformation to the Lagrangean frame

leads to an integral of (6) given by
R (a, 0)

- J, (7)
R(a, t)

where R(a, t)= p(x, t) for x = X(a, t). Equation (7) is therefore the mass balance in the Lagrangean
frame.

Species Balance. A mixture of n ideal gases is considered and its composition is described in terms of

mass fractions Y_(a, t) = y_(x, t), x = X(a, t) i = 1..... n. Chemical reactions may occur and the Y_ are

therefore not conserved, but may be consumed or produced according to a reaction mechanism

consisting of many steps. At this point we only need to know that the rate Q_ of production due to
chemistry is a local function of the thermodynamic variables (no derivatives or integrals with respect

to time or space/label appear in the Q_). The balance for the mass fraction y; in the Eulerian frame is

then given by

Oy i_ a [" _ ay,'_
PD, +oq,, i = I,...,,,,k _.x:}
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where F_ denotes the Fickian mass diffusivity. Transformation to the Lagrangean frame is carried out

using (1), (5), and (7} and results in

8_- - 2R o a'o_ea"'_ _a_ 8a,_ _a_ \ R o 8aa ?.a.e ?_a,J + Q_' i = 1..... n, (9)

where R 0 = R(a, 0).

Momentum Balance. Newton's second law leads to the balance equation for momentum. In the

Eulerian frame it appears as

Dv_ _p t_z_#

P D---{= -_x--_, + _ + pf_' (10)

where _ is the stress tensor and f_ is the external force per unit mass. Transformation to the
Lagrangean frame is straightforward and results in

8V_ 1 _X_ 8X_ _P 1 c_X_,_X_ OT_

c_t - 2R ° _6_,_ _3a_ Oa_, Oaa + 2-_o _;'¢e_'_ _a. _a,_ _a_ + F_, (11)

where P(a, t)= p(x, t) is the pressure and T_(a, t)= r_p(x, t) is the stress tensor in the Lagrangean
frame. Newtonian fluids satisfy the linear constitutive relation

between stress and rate of strain where p is the dynamic viscosity.

Energy Balance and State Relations. The first law of thermodynamics applied to a differential control

volume leads to the energy balance in the Eulerian frame. This balance can be set up in several

equivalent forms depending on the choice of the thermodynamic variables. For enthalpy h(x, t) it is

given by

Dh Dp Oq_
-- + _ - -- (13)

P -fit = Dt 8x_"

The specific enthalpy for a mixture of ideal gases is composed of the enthalpies of the components

h = _ hi (14)
i=_ M_ yi'

where h_ is the molal enthalpy and M_ is the molecular mass of the ith component. The molal

enthalpy h_ in turn consists of the formation enthalpy _o and the sensible enthalpy

_, = hO + dT' _v(T'), (15)
o

where ?_(T) denotes the molal specific heat at constant pressure. The dissipation function • is defined

by

c3v_

= r_,_c_xt_ (I 6)

and the energy flux q, consists of conductive, diffusive, and radiative fluxes

-kar,_x, p _" _ ",eY'= -- ,..., Fi-CT_ + q_. (17)q,
i=l

The system of equations is closed if the ideal gas equation

p = pRT (18)

is included and the chemical sources Q_ are specified. The energy balance in the Lagrangean frame can

be deduced from the first law of thermodynamics for a differential system or by transformation of the
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Eulerian form (13). The result is given by

c_H I gP I I OXa OX_ c_Q=

dt - R c_t + R q_ - _ e,o_ea,o, c_an c_a_, c_a_'
where

1_¢ = __1 0x_ _x>,_v_
R 2Ro _<>'%"'_T'p ?,a. Oa_, ?aa

is the dissipation function per unit mass in the Lagrangean

terms of composition Yi, enthaipy h, density p, and velocity

(19)

(20)

frame, The basic laws were presented in

v. This set of variables is not always the
most convenient one and linear or nonlinear combinations of these variables are used later for the

treatment of turbulent flows with chemical reactions. For low Mach numbers it can be shown (Pope,

1985), by Taylor series expansion of the state relations, that chemical sources are, to the lowest order,

independent of pressure fluctuations and that the substantial derivative of the pressure in the energy

equation can be neglected unless strong pressure variations are imposed by unsteady boundary

conditions. Hence a set of thermochemical variables hVi(x, t) emerges for low Mach number flows, that

determines the state of the fluid mixture locally and these variables are governed by transport

equations (Eulerian frame)

p-_t --_x _p,i_]+pqi, i=l ..... 1, {21)

or (Lagrangean frame)

0t - 2Ro t't_'A_ Oa_ ga_, _aa \ Roo Oap _a_ _a,] + Qi, i = 1..... I. (22)

The source terms q_(x, t) = Q_(a, t), x = X(a, t) are not identical with the sources in (8) and (9). Their

structure depends on the particular thermochemical formulation or model employed for the local

description of the reacting mixture. The complete system of equations determining the local mechani-

cal and thermodynamic state consists now of mass balance, momentum balance, and scalar balances

(2J) or (22) togetber with the relations between the _/,, and tbe thermodynamic variables. It can be

expected that I is less than n + 1 for certain classes of flows. Non-premixed turbulent flames at low

Mach- numbers for instance can be modeled using a single conserved scalar (l = 1 and Q_ = 0). This

is discussed in more detail in a subsequent section, The case of supersonic turbulent flows is dealt

with in a slightly different fashion.

2.2. Characteristic Functionals

A complete statistical description of a turbulent flow can be achieved if the characteristic functional

(see Hopf, 1952; Hopf and Titt, 1953; Lewis and Kraichnan, 1962; Foias, 1974; Vishik et al., 1979;
Constantin et al., 1985)

( {fo [ ]})re[d, v, _01..... q0t] = exp i dr (p, d) + (v, v) + (_Oi,_Pi) (23)
i=l

for variables in the Eulerian frame or

=(..{, ,xx,+.,
for variables in the Lagrangean frame is specified. The arguments of the functionals m and M are the
functions d(x, t), v(x, t), _p;(x, t) and d(a, t), x(a, t), _p;(a, t), respectively, which are square integrable in

the flow domain 9_ × [0, T]. The expressions (p, d), etc., indicate the scalar product

(v,, o,) = _ dxv,(x, t)v_(x, t) (25)
it)

in the Eulerian frame and

(X_,, x=) -- _ daX¢,(a, t)x,(a, t) (26)
(ot
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in the Lagrangean frame, where _(t) is the flow domain at time t and [0, T] is the time interval of

interest. The angular brackets represent the mathematical expectation, which is defined as a functional

integral over the space of all realizations of the turbulent flow field (see Vishik et al. (1979) for the

definitions of the appropriate function spaces). This functional integration requires the existence of the

probability measure (see Daletskii (1962) and Skorohod (1974) for functional integration). For incom-

pressible flows and homogeneous boundary conditions, the existence of the probability measure has
been established (see Hopf and Titt, 1953; Foias, 1974; Vishik et al., 1979), but not its uniqueness.

For compressible and reacting flows this is still an open question. We assume in the following that the

probability measure for compressible and reacting flows exists. With this assumption we can proceed
to set up the transport equations for characteristic functionals following the method put forward by

Vishik et al. (1979). Noting that the characteristic functionals are independent of time t and location x

and label a, we have to form functional derivatives (see Averbukh and Smolyanov, 1962) in order to

establish the dynamical change at a given time and location or label. The transport equations for the
derivatives of the Eulerian functional m can be obtained without difficulty (see Lewis and Kraichnan,

1962; Dopazo and O'Brien, 1974; Kollmann, 1987). The mass balance (6) leads to

?_ 6m _ 62m
-- i (27)

c3t 6d(x, t) ?x, 6d(x, t)fv,(x, t) '

where 6/6d(x, t) denotes the functional derivative (Averbukh and Smolyanov, 1962) defined by

, dx

Momentum balance (10)leads to

fo r _m

dt hd(xTt))h(x, t) - J_rn[d + eh]l_=o. (28)

_'_ 62m _ 63m _I-I ('?,Ta,6. . ('_m

c_t 6d(x, t)6v_(x, t) c?xp _d(x, t)fv_(x, t)fot_(x, t) + ex__ (?xp + !f_ Od(x, t) , (29)

where the external force per unit mass fa was assumed to be nonrandom and FI denotes the pressure

functional
I f lnl T _l \

lq[d,o, qgt ..... rpt]=lp(x,t) exptijo dr[(p,d)+'"]l_
{3O)

and Tap denotes the stress functional

( {fo })Ta¢[d, _),Pl ..... _P_]-= rap(x, t) exp i dr[(p, d) + '"] . (31)

The stress functional for Newtonian fluids can be given explicitly in terms of m:

( _ 6m _ _m ,3 6m ) (32)T_a = - iu _.xa 6o,(x, t) + c_xadioa(x, t) 26a_ gx;. 6v_.(x, t) '

The viscosity _t was assumed to be constant. The thermochemical variables _,_ governed by (21) lead

to (Kollmann, 1987)

_'_ 3Zm . (3 63m (n [ _3 6m )
_t 6d(x, t)6_j(x, t) = t_x a 6d(x, t)6vp(x, t)&p_(x, t) + i_pFJ_xtj 6q_j(x, t) /

+ iqj &oL(x, t) ..... i60_(x, t) 6d(x, t)' j = 1..... I, (33)

where the transport coefficient ,oFj was assumed constant. The sources qj(q_ ..... q_,.) appearing in (21)

become operators acting on m. If q_ is not a polynomial in the _oj, then it may turn out to be a
pseudodifferentiai operator (see, for instance, Taylor, 1974) on the functional level in (33). The

functional equations for the Lagrangean functional M are obtained in similar fashion as shown by

Monin (1962) for the case of incompressible turbulence. Mass balance (7) leads to the equation

6M i t_ 6 _ 6 _ 6 6M

6d(a, 0) - 6 gaa'ea"°' lim Oa" 6x_(a', t) c_a_ 6x,(a", t) _a_* 6x,o(a*, t) 6d(a, t)' (34)
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where the limit is carried out for a', a", a* approaching a. The mass balance (7) is not an evolution

equation and thus (34) is not of evolution type. The balance of momentum (11) leads to

?2 62M _3 3 _ 3 _H
i , lira

?t 2 6d(a, 0)6x,(a, t) = -_e,p>.E_,,, _a_ 6xa(a', t) t?a" 3x;,(a", t) ?a_

1 . 3, 3 _, _ _T_¢ 6M

+ _p_,_%,_, hm _a_ 3x;,(a ,' t) ('_a_,"3x_(a", t) _a_ + iF_ 3d(a, O) (35)

and the thermochemical balances (22) imply that

(_ 32M i ? 3 _ 3

_t 6d(a, 0)3,pj(a, t) = 2 e_,,:_,,_ iim _a'_ fix,(#, t) c_'a23x_(a", t)

× _ Dj lim ?a_' 6x;(a*, t) _a** _Sx_(a**, t) ?a, 3_0j(a, t)

(,+ iQi i6q_a, t) ..... ifqg,(a, t) 6d(a, 0)' j = 1..... 1. (36)

The transport coefficients Dj =_ R2FflRo are again assumed constant in order to avoid unnecessary
complications. Variable transport coefficients can be dealt with, but the resulting equations become

rather unwieldy.

The transport equations for the Eulerian and the Lagrangean functionals exhibit several properties

of fundamental importance. First we note that the equations are linear in contrast to the physical

balances, which are highly nonlinear. Furthermore, the system of functional equations is closed in

both Eulerian and Lagrangean frames if we consider the first functional derivatives of m or M as

unknowns. This follows from the fact that both the stress functional T_a according to (32) and the
pressure functional FI can be expressed in terms of m or M. No explicit form for the pressure

functional can be given, but the thermochemical relations imply that the pressure can be expressed in

terms of p and tp_.... , t_t and thus there exists a relation between FI and m or M. Finally, we outline

a procedure to establish the characteristic functional m or M from the solutions of the functional

equations, which provide the first derivatives of m or M. We note that functional differentiation and

appropriate combination of the solutions of the system of functional equations (27) (33) or (34) (36)

lead to a Poisson-Levy equation (see Feller, 1986) for m or M. The Dirichlet problem for this

Poisson Levy equation can be solved analytically and the result shows that m and M can be

represented as functional integrals with respect to a Wiener measure (see Theorem 3.5 in Feller
(1986)).

2.3. Finite-Dimensional Characteristic Functions and pdfs: Eulerian Frame

The functional equations contain all the statistical information on the turbulent reacting or nonreacting

flow. In particular, the transport equations for finite-dimensional characteristic functions follow from

them. The governing equations for finite-dimensional pdfs are thus determined also, because pdfs are

the Fourier transforms of characteristic functions. The derivation of the equations for finite-dimensional

characteristic functions are outlined for the single-point case. We note first that the generalized

argument functions

d* = _6(x - x°)h(t - t°), v* = _3_3(x - x°)6(t - t°), _p* = _bjf(x - x°)b(t - t°), (37)

where d, _, Oj are parameters independent of x and t, produce the single-point characteristic function
m_ when applied to m,

mid*, o*, q_*..... tp*] = m 1(tt, _3,_b1..... _bt;x °, to), (38)

and rn_ is, according to (23), defined by

..... (ot;x°,t°)=(exp_ildp(x°,t°)+3"v(x°,t°,+ _(oj_b_(x°,t°,l_ _. (39,rnl (_,/3, (pi

\{.L _]J/j=l

Variational derivatives reduce to partial derivatives with respect to the parameters _, r3, 0_, as for
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instance in

6d(xO, to ) [d*, o*, tp* ..... _p*] = ml (a], #, _b,..... _bt; x °, to). (40)

Derivatives with respect to x and t appear differently for m and ml. From the definition of the

functional derivative (28) it follows that

at 6d(x, t) = i (x, t) exp i dr (p, d) + (v, v) + (_j, ¢pj) , (41)
j-1

whereas it follows from (38) that

_m' 'tOP" °&o I /_G ° I--,a\d_6(x,t°)exp{i[.-.]} +i6,_(x ,t°)exp{i[..']}

+i j=l_ 0J(_0_6(x't°)exp{i['"]} ' (42)

where
I

[...3 _ dp(x °, t°) + _.v(x °, to) + Y ,b_j(x °, t°)
j=l

where

+ + q}.
The transport equation for the pdf

fl(d, v, _Pl..... cpl;x, t)dd.du.&p 1 ...&Pl

= Prob{d < p(x, t)<d+dd, G<G(x, t)<G+d%, _pj_<_bj(x, t)<_pj+d%, _= 1.... ,3, j= 1..... l}
(46)

holds. Using (40)-(42) it is easy to show that the following relation holds for time derivatives:

_ml _ c_ _ 6m _ 6m t t3 3m
&o &o 6d(x o, t o) [*] + G &o aG(x o, t o) [*] + j=l_ tPJdt°" 6tpj(x °, t°) [,], (43)

where [,]--[d*, u*, _o*.... , _o*]. Note that differentiation has to be carried out first and then the

arguments [,] are applied. Furthermore, note that standard and functional differentiation do not

commute. Similarly it follows for the substantial derivative that

62 _ 6m

_m 1 e3 02ml -- --i_ to)2 to ) [,]r?t° idol -_ _x ° iOcliO6_ (i6d(x °, Ox ° i6G(x °,

{0 _2m _ _3m }+i6a fft_ i6d(x °, t°)i6oB(x °, t°) 4-_xo ifd(x o, t°)ifG(x °, t°)i6%(x °, t°) [*]

{ _ 82m + c3 ij3m }OJ _6 i6d(x o, to)i6tpi(xO ' to) _x o i6d(x o, to)i6G(x 0, to)i6rpj(xO, to)
+i

j=l

(44)

holds. The transport equation for m 1 can now be deduced from this equation by evaluating the terms

on the right-hand side of (44) with the aid of (29) and (33). The result can be stated in the form

(superscripts of x °, t°, and hats are omitted from now on)

_t i_d + Ox_ iOdi&;, i q3jqj ..... i_-tpt iOdj=_ i

--1111 "[- iO_t --_ "4" _ -_ pf a fil I "}- i _OXa j=l
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can be obtained by Fourier transformation of (45) or it can be derived directly from the basic laws

(see Lundgren, 1967; Pope, 1985; Kollmann, 1987). It can be given in the following form:

where

d_t+d°a_+ j=l_ _ (dqi(_°l ..... q_t)fz)

{47)

I

,p - a(p(x, t) - d)a(v(x, t) - o) 1-I a(_,j(x, t) - _oj) (48)
j-1

is the Fourier transform of rh1. The equations for higher-dimensional (multipoint) characteristic

functions and pdfs can be obtained in the same manner (see Lundgren, 1967).

The equations for the characteristic function mt and the pdf fl share several important properties,

They were deduced from the closed and linear equations for derivatives of the characteristic func-

tional, but they themselves are not closed at any finite-dimensional level. Viscous and diffusive terms

as well as the pressure-gradient introduce the two-point characteristic functions or pdfs into the

single-point equations and this property carries over to higher-dimensional equations. Hence, the

equations for finite-dimensional characteristic functions and pdfs are always indeterminate.

2.4. Finite-Dimensional Characteristic Functions and pdfs: Lagrangean Frame

The transport equations for finite-dimensional characteristic functions and pdfs in the Lagrangean

frame can be derived using the same ideas as for the Eulerian frame. There is, however, sufficient

difference in detail to warrant a brief discussion. We consider again the single-point case. The

generalized argument functions analogous to the Eulerian case would be

d* = _6(a - a°)6(t), x* = _6(a - a°)f(t - to), (p* = q3jf(a - a°)6(t - to), (49)

where the parameters d, i, _bj are independent of the label a and time t. We note, however, that d* is

taken at the reference time zero, because the actual density can be expressed in terms of the initial

density via the integrated mass balance (7). The characteristic functional M taken at the generalized

arguments (49) turns out to be the single-point characteristic function Ml(d,i, _1 ..... _). It is

important to notice at this point that M1 does not contain the information on the statistics of the

velocity fluctuations, whereas the characteristic functional Mid, x, _0t..... _0t] incorporates all statis-

tical properties of velocity. Since the velocity is a quantity of primary interest, we modify the

argument functions x* as follows,

x** = X=6(a - a°)J(t - t °) + _t_- 6(a - a°)?-/6 6(t - t°), (50)

and regard ?_=/c_t =_ _= as a parameter like a_. Note that choosing the argument function x=(a, t) for the

characteristic functional M implies the choice of the derivative Ox,/Ot. The derivative Ox_/?t would be

a redundant argument on the functional level. However, if we choose x=(a, t) only at a single point as

in x*, then the derivative Ox,/& is not determined and derivatives become unknown variables. Taking
the characteristic functional of the modified arguments now leads to

({[ 0 ,aO ]})Mid*, x**, qg*..... _o*] = exp i _R(a °, t°) + .'_,X,(a °, t °) + 6,_-( t°) + k _bJq'J(a°, t°) (51)
j=l

which is indeed the desired characteristic function Mt(_, i, 6, _ba..... q_) of density, position, velocity,

and thermochemical scalars in the Lagrangean frame. The characteristic functional Ma involves,

strictly speaking, two time levels, namely zero and t°, but for to >> 0 all correlations with quantities at

the initial time zero will have died out and, therefore, M t is considered a single-point characteristic
function. We note a fundamental difference between M_ and its Eulerian counterpart rnl. The Eulerian

function m_ depends on the probabilistic variables (d, 6, _ ..... _b_) and parametrically on (x, t),
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whereas the Lagrangean function M_ depends on the augmented probabilistic set (d, _:, 6, qbl ..... 0t)

and parametrically on (a, t). The time rate of change of the characteristic function M l can be

expressed in terms of the functional derivatives of Mid, x, _ox..... _ot]

a (_M 1 aZM1 t0 2 _2M l c3 62M

_t ° ia_l i.% i(?_ti_6, - i6_ _ i6d(aO ' O)iiJx_(aO ' to ) [,] + i _ *j=l qgJ_t° iJd(a °, 0)i6q_j(a °, t°) [*]' (52)

where [,] denotes the arguments given by (51). The dynamic equations (35) and (36) for the functional

derivatives of M can now be used to eliminate the time derivatives on the right-hand side of (52). The

result can be given in the form (superscripts and hats are omitted from now on)

d (?M 1 a2Ml (? ..... i_q91 k?dat i?,d ix, iadiav, i qojQj i_4oi
j=l

1 . c_ 6 a 6 ?H= iv, - _e,,a>x_,o, hm aa', 6xp(a', t) aa2 6%,(a", t) _?a_[*]

1_. lim _ 6 a 6 aT,# 1 t_M1+ 2-_a>'¢e'_"_' ?a', cSx.>,(a',t) aa,"o 6x;(a", t) aaa [.3_ - iv, F, i_

i c? 6 a 6 c?

" ' c a_ 6x_(a , t) ?'a_

( a 3 (? 6_6M)x Dj lira t_a_' 6x;(a*, t) ca,__ ** 6x¢(a**, t) aa, &pj(a, t) [*]' {53)

where the limits are carried out for the labels a', a", a*, a** approaching a. The right-hand side of [53)

contains the nonclosed terms generated by pressure gradient and viscous transport. The transport
equation for Ml can be considerably shortened (but not simplified) if a mixed Eulerian/Lagrangean

form of the basic laws is employed, which is given by

R ?V, aP J c3T_a_ _ __ + + RoF,
o at J ?x_ ?xp

and

Ro ?_ =

It follows that (53) can be recast as

t_ aM l a2Mt _ ( a a )aM_ix_ _ i qgjQj i_l ..... i_-qh iadFt iOd i?dicv_ j=l

aP aJ4i:iv: -J?x +,#c, gf I iv:F=-i_+i_ q°'j=, tRFJ?x;)M , (54)

where

and therefore

M, = (70')

holds. The transport equation for the Lagrangean pdf F_ can be deduced from (54) using a Fourier

transform. The result can be given in the form

d _Fl _F_?t + do:_ + ¢" [dQi(_o , ..... _,)F1]
j=l •

c3 _j aP aT:#_f\_dV " _ _ a J_x:: RFj_X_ F (55)
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whereP is the Fourier transform of M and J denotes the Jacobian defined in (3). It is instructive to

compare the transport equations for the Eulerian pdf (47) and the Lagrangean pdf (55). We know

already that fl and Fl are not equal due to different sets of independent variables. The left-hand sides

of (47) and (55) have the same structure, but the right-hand sides show two subtle differences. The

volume-expansion term is absent from (55) and the Jacobian appears as a factor of the pressure-

gradient and the viscous-diffusive terms. Both differences can be traced back to the definition of the

generalized argument functions (51) of the characteristic functional, where d(a, 0) is taken as the

density at the reference time zero. If we define

d* ----d6(a - ao)6(t - t°)

instead, we obtain the pdf F_'(d, x, o, _Pl..... _; a, t) governed by

d 8Fl + OF1 + _ 48

: + - - _ (56)

which has exactly the same structure as in the Eu]erian case (47). The relation between the Eulerian

solution J'_(d, _, qh ..... _oz;x, t) of (47) and the Lagrangean solution Fl(d, x, v, _0a..... ,_; a, t) of (56) is

discussed in detail by Pope (1985) and Kollmann and Wu (1987). It is shown by Kollmann and Wu

0987) that F_ and fi differ only by a factor independent of the arguments of F_ and [_. This

concludes the discussion of the exact pdf transport equations and the following sections are now

devoted to the construction of closed pdf equations.

3. Pdf Methods

In the previous section if was shown that the transport equation for the pdf (which describes the

mechanical and thermodynamic state of Newtonian fluids in turbulent motion at a finite number of

points in space and time) follows from the determinate and linear equation for the characteristic

functional. The equations for finite-dimensional pdfs and characteristic functions are, however, indeter-

minate and the closure problem must be overcome in order to obtain a solvable set of equations. In

this section the properties of the closed and nonclosed terms in pdf equations, as well as methods of
closure, are discussed.

The pdf f_(d, u, q_,.
conservation law

3.1. Properties of the Single-Point pdf Equation

, q_; x, t) is governed by the transport equation (47), which has the form of a

_t (dL ) i_-_, t+, g+ (dv, f_) + _ --(Fk) = 0, (57)
k=l gYk

where Yk - {d, _, tp_.... q_t} represents the set of probabilistic and independent variables while Fk

represents the corresponding fluxes. The solution f_ of this equation must satisfy two fundamental
conditions,

L > 0 (58)

and

fdy f_(y; x, t) = 1, (59)

in order to qualify as a pdf. Dividing (47) by d and integrating over the probabilistic variables y leads
to

f dr f8 = O.

Hence, (59) is preserved provided that initial and boundary conditions conform with (58) and (59).
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Multiplication of (47) with expressions of the form

1+4

I-I (Yk -- (Yk)Y _
k=l

(_k >- 0 is an integer) and integration over the range of the y_, k = 1..... (l + 4), leads to the transport

equations for the statistical moments.

The left-hand side of the pdf transport equation (47) contains the convective transport of fl in

physical space and the convection in the space spanned by the thermochemical variables _01..... opt.

The latter group

_ (dqj(qh ..... ¢Pm)f_)
j=l •

is closed as long as the source terms qj of the scalar transport equations (21) are local functions of the
scalars ¢_ ..... ¢'r These sources may be highly nonlinear (as in the case of combusting flows) and can

be dealt with rigorously in the pdf and characteristic function equations in contrast to moment

equations. Their basic property is apparent from the way qs appears in the terms: dqj(cp_ ..... _ot) has
the role of a convection velocity in scalar space analogous to the velocity v, in physical (Euclidean)

space. If qs < 0, then the pdf is moved to higher values of ¢pj in accordance with the properties of a

source term in (21). If qj is furthermore constant, the shape of the pdf remains unchanged during this

convection along the rpj-axJs in the absence of other effects.
The right-hand side of (47) contains the three nonclosed terms. The term

represents the effect of volume expansion on the pdf. This term is zero if density is constant for

material points, because
D p c_v_

Dt -- P _xf

This case includes stratified flows (where p may change with label a but not with time t) and

incompressible flows (where p is constant in space and time). The relative rate of volume expansion is

nonzero in turbulent reacting flows and in turbulent flows at transonic and supersonic speeds. The
conditional moment in (60) can then be viewed as a convection velocity along the density axis.

Positive rate of volume expansion leads to negative convection speed and the pdf is moved toward

lower density in accordance with the mass balance. The second group of terms on the right-hand side
of (47) represents the motion of the pdf in velocity space. The effect of the pressure gradient on the

pdf can be elucidated in some detail for the special case of incompressible flow and for points x far

away from boundaries. Pressure is then determined by a Poisson equation

Ap = -/9-- --
x_ c_x_

whose solution

P .f dy c_v, c_vo (61)p(x, t) = -4n _ Ix - Yl ayo c3),

allows us to express ((OplOx,)f) as follows (see Hanjalic and Launder, 1972; Lumley, 1978; Pope,

1985):

f = _ dy Ix - YI-' _ya_y_. (va(Y)V_.(Y)J_). (62)

The expectation in the integrand involves the two-point pdf f2(... ; x, y, t), since

f ,/,,_2_,,_2_,,_2_¢t./ V(2); it),

(v_(y, t)%(y, t)f) = j,,,_ _ _ J2,-, u, _Pl..... _P,, x, y,

where the values of v(y, t) are denoted by u_2_.From the fact that pressure is related via a differential
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equation to velocity, it follows that the pdf flux due to the pressure gradient cannot be expressed in

terms of f_. It involves necessarily the two-point pdf f2.

The external force .f, per unit mass is considered for two cases: first, the nonfluctuating case where

0
= f_(x, t)_--_o(df_ )(pf, f )

c_v_

appears in closed form, and, second, the fluctuating case where the statistical properties of f, must be

specified in order to arrive at the proper form for this term. If the external force corresponds, for

instance, to a Wiener process, then f, is not defined and the momentum balance must be written as a

system of stochastic differential equations containing

£ dt = g_ dW_(t),

where g_ dW#(t) denotes the velocity increment and dW#(t) denotes the increment of a vector Wiener

process (see Keizer, 1987) with zero mean and unit variance. The pdf equation then contains

? (pf_./_)_ 1 32
t?v_ 2 c_v_o_ (g_,,,g_.fl ),

where -_g_,,g;.al is the tensorial diffusivity in the velocity space. This aspect of the pdf equation is
discussed in more detailed in Section 3.2. The remaining terms on the right-hand side of (47) represent

molecular transport in velocity and scalar space. They can be rearranged in such a way that their

effect on the pdf becomes more transparent. For the sake of simplicity we assume, for the moment,

that ctF) = pF = y = constant are valid. Simple manipulations lead to

- -2 . <%/>
j=l_ \ cx_ / j=_k=lcq_)cq_k

±
j=l j=i

(63)
where

and

denote the rates of dissipation. The essential properties of the molecular transport terms are contained

in the underlined expressions. An inspection of those terms shows that molecular transport affects the

pdf f_ differently in physical and velocity-scalar spaces. The distribution of the pdf in physical space

is smoothed exactly the same way as velocity and scalars are smoothed by viscous and diffusive

transport, This contribution is, however, negligible for turbulent flows at high Reynolds and Peclet

numbers. The underlined terms representing transport in velocity-scalar space are of the leading order

in high Re/Pc-numbers flows and affect the pdf analogously to the time-inverse heat conduction

equation (i.e., heat conduction with negative diffusivity) given by

c3ft _2

where

D:_ = <@:alp = d, v = u, % = ¢p;>
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ispositivedefinite(notethatthetraceof _,_ is thedissipationfunction).Theinitial-valueproblemfor
thisequationis notwell-posedandit followsthatclosuremodelsfor themoleculartransportterms
cannotbebasedon this typeof differentialequation.Theeffectof themoleculartransporttermsin
velocity-scalarspaceis in essenceto reducevariancesandconvarianceswhileleavingnormalization
and meanvaluesunchanged.Thepdf in freelydecayingturbulentflowswill approacha Dirac-
pseudofunctiondueto themoleculartransporttermsactinginvelocity-scalarspace.

3.2. Formulations

The presence of nonclosed terms in the transport equations for finite-dimensional pdfs requires

additional information in order to arrive at a finite and determinate system of equations. This closure

problem can be tackled in several different but not necessarily equivalent formulations. Three ap-

proaches are outlined, two of which have been the basis for successful modeling efforts.

Formulation 1: Pdf. The nonclosed terms are analyzed as fluxes of the pdf in the multidimensional
space spanned by velocity and scalar variables. The exact form of the nonclosed terms is given

directly by the transport equation (47). The essential step in the analysis is the determination of the

structure of the set formed by all realizable states in velocity and scalar spaces. The velocity space is

usually a three-dimensional Euclidean space, but the scalar space can possess intricate boundaries. In

particular, chemically reacting flows lead to a description of the local state that requires many scalar

variables. The range _ of these variables is bounded and the boundary _ of this range is determined

by complex relationships (see, for instance, the case of CH 4 combustion (Chen et al., 1989)). However,

the following fundamental restrictions are imposed on the possible forms of the boundary ?_ of the

scalar range: The boundary 0N is an orientable, singly connected, and piecewise smooth hypersurface

(dimension I - 1) that encloses a convex body of nonzero/-dimensional volume. The enclosed volume

does not have to be bounded. The condition of convexity is relevant for the mixing models to be

discussed later. The existence of boundaries in velocity or scalar space imposes a condition on model

expressions for nonclosed fluxes: the flux component normal to the boundary _?_ (where the normal
exists) must be negative or zero if the normal is defined as positive outward (which is only possible for

orientable surfaces). Then

I

nkFk(y ) _< 0, Yl ..... Yl on _. (64)
k=l

If this condition is violated, unphysical states becomes accessible.

Formulation II: Characteristic Function. Characteristic functions are the Fourier transforms of pdfs

and therefore an equivalent formulation under mild conditions. They have been used rarely in the

treatment of turbulent flows (see Kollmann, 1987). Characteristic functions possess several interesting
properties which can be exploited for the construction of closure models. For the sake of simplicity,

the case of a single probabilistic variable is considered. The distribution function Ft(), ) and character-

istic function m_(_) can be decomposed uniquely into the sum of three distinct contributions tJordan

and Lebesgue theorems (Lukacs, 1970))

Fl(y)=aFd(y)+bFa_(y)+cFs(y), a,b,c>O, a+b+c= 1,
and

ml(_.) = amd(_) + bm,_(_) + cm_((),

where Fd is a step function, Fa, is absolutely continuous and has a derivative everywhere, and E, is
continuous but singular in the sense that its derivative is zero nearly everywhere. The decomposition

of the characteristic function is completely analogous to the distribution function; md is the character-

istic function of the discrete distribution, hence it is almost periodic (see Lukacs, 1970)

lim sup Imdl = !,

m_¢ is the characteristic function of the absolutely continuous distribution, hence

lira m_¢(() = 0,
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and m, is the characteristic function of the singular distribution, where the limit of m_(ff) as I(] _ '_

can be any number between zero and unity. The singular part of distribution and characteristic

functions is tacitly omitted for flows at finite Reynolds numbers. The pdf is then given as a

generalized derivative of the distribution function and the pdf and characteristic function are indeed

equivalent. However, the analysis of turbulent flows in the limit of infinite Reynolds number leads to

the investigation of subsets of the flow field, which have zero measure and fractal dimension (see

Mandelbrot, 1974; Levich et al., 1984). This analysis is based on the fundamental but unproven

assumption proposed by Kolmogorov (see Chapter 8 of Monin and Yaglom (1975)), that the rate of

dissipation

(e) = Re c?x, _Txt_

becomes independent of the Reynolds number for Re >> 1 and approaches a nonzero and finite limit

value as Re --, re. The rate of dissipation is dominated by the enstrophy f_z = to,_o= (density is taken
here as constant)

#2

(e) = (Re -t D 2) + ,?x,_ (Re-t v,v_,>

because the difference with (_) is only a transport term. Hence, the instantaneous rate of dissipation
is concentrated on subsets of the now field, where enstrophy becomes unbounded as Re o :_. The

vaJues of e are (for this limit) restricted to zero nearly everywhere and to infinity on a set of measure

zero, such that a finite and nonzero mean value exists. It is easy to construct a simple example for

such a random variable. For instance, the discrete pdf

fl(8; Re) = I - 6(_:) + _ee 6(e, - Re(c:)), 0 < (t:) < ,x:,

or the discrete characteristic function

1

m_(_; Re) _- ! - _ee(1 - exp{i_(e) Re})

has the mean value (_;), which is independent of Re, and the variance (e '2) = (_)2(Re - 1), which is

proportional to Re. Letting Re _ _ a random variable is produced that assumes the value zero
with probability one, but has nonzero mean (e) and unbounded variance. Pdfs, such as the one

constructed in this example, are, however, rather awkward to handle and are, therefore, not suitable

for the analysis of variables defined on fractal sets in the limit of infinite Reynolds number. Char-

acteristic functions are then the superior tool because they allow the explicit treatment of singular

contributions which cannot be ruled out a priori for the limit of infinite Reynolds number. Further

properties of characteristic functions can be deduced from its definition. Characteristic functions are

always bounded and continuous in contrast to pdfs which may be unbounded or pseudofunctions.

Since characteristic functions and pdfs are related by Fourier transformation, results obtained in one

formulation can be translated into the other if both satisfy the conditions for Fourier transformation.

Formulation 111: Langevin Equation. Single-point pdf equations can be simulated under certain

conditions by an ensemble of notional particles, whose dynamics are governed by stochastic differ-
ential equations. This approach was developed by Pope (1985) and is essentially based on Markovian

stochastic processes. We outline the basic ideas and derive the pdf equation for this approach. The

Lagrangean point of view is adopted and the basic laws for a material point a are set up in mixed

Eulerian/Lagrangean formulation:

FX_
_t - V_,

c_R

c_t

_v,
at

(65j

- R (66)
c_X,'

1 OP I _'_T_p
- + --- + F,, (67)

R (_X_ R dX_
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at - R _c_ OJ0X,) + Qj' j = I..... ;. (68t

The right-hand sides of the basic laws (66)-(68) are split into expectations and fluctuations as follows:

0R

63t

_t

_t

/ av;\
- AIR, .t,<,

--- = A:(R, <P>, < T_,.>, <F,>) + B=(R,
k

ae' aTL ,)3 ' ,F_
cX_ _X_,

fX_ / a°e;\\

The terms denoted with A, A:, A t represent the deterministic part and may depend on expectations

and the dependent variables R, V:, _j. The B, B:, Bt represent the random parts, which depend on
fluctuations such as _V'Ic_X= (which cannot be expressed in terms of the dependent variables at a

single label a or observer position x) in addition to expectations and the dependent variables R, V,,

q't- Hence, the deterministic parts are given by

A -= -R 0<v_>
c_X:'

I _<P> 1 a<T,_>
A, _= + + <G>,

R 8X_ R ¢?Xp

AJ=-ROX=\ ' _X_ ) + QjfW, ..... Wt, R),

where Dt -= RF t = constant and the sources Qt were assumed to be local functions of R, _l ..... _.
The random contributions contain all the fluctuations that cannot be expressed as functions of the

dependent variables; hence
aVd

B--= -R_,

I _P' "_ '1 c,T_

..-= •
Note that the random parts have the structure of additive (such as F_) and multiplicative (such as

_P'/_X_) coloured noise (see Soong, 1973; Lindenberg et al., 1983). It follows that the system (65)-(68)
can be written in the form

_?Wk (69)_YJ = At(Y, <V>) + Bj_(Y, <V>)-_?tdt

where Y -= (R, X, V, q_ ..... _'t) is the vector of the dependent variables and W_ is a random differenti-

able vector representing all the additional unknowns contained in B, B_, Bj. We now relax the
conditions on the random processes W_ and only require that the increments of W_ are bounded. The

relations (69) must now be regarded as a system of stochastic differential equations (see Pope, 1985)

and appears as

dY_ = Aj dt + Bt_ dW_, j = 1..... (I + 7). (70)

This system is solvable if the initial conditions and the processes W_ are specified. For turbulent flows

these processes are, however, not known unless the characteristic functional has been determined.

Hence we investigate, in later sections, random processes that are capable of simulating some (but not

all) of the properties of the fluctuations occurring in a turbulent flow. It is shown that specifying such
processes is equivalent to constructing closure models for the pdf equation (56). In order to establish
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this equivalenceand possiblerestrictionson the pdf equationfor thiscase,it is derivedfor the
solutionprocessof thesystem(70)ofstochasticdifferentialequations.Thisderivationcannotbebased
on a straightforwardtimedifferentiationbecausedWk/dt does not necessarily exist. We proceed

therefore in a different manner following Soong (1973) for the case where W k is at least continuous.

The single-point pdf F_ (d, x, v, _Pl..... _ol ; a, t) =--FI()'I ..... v_+_; a, t) satisfies the fundamental relation

Fl(y; a, t) = fdy'F_(y'; a, tly; a, t + At)F_(y'; a, t),
(71)

where Ff denotes the pdf of Y at (a, t + At) conditioned upon Y = y' at (a, t). The conditional pdf Ff

can be expressed in terms of the conditional characteristic function M_

,fF_(y; a, t + At) = _- dy' exp(-iy'_y_)M_(y; a, tty'; a, t + At).

If all moments of finite order exist for the conditional pdf, then M_ is differentiable at the origin and

can be expanded in a Taylor series at the origin. Using the well-known relation between moments and

the derivatives of the characteristic function at the origin, we obtain (L =- l + 7)

Fl(y;a,t+At) = _ ... _ _!--l)"J _"J
,,=0 ,,=0 _=_ nj! c_yTj {h.,...,,F_(y; a, t)}.

Moving the first term of the series to the left-hand side, dividing by At, and letting At _ 0 leads finally

to the pdf equation

_t = ,,=o"',L=oj=l nfl _t,_'_ {H....,,(y; a, 0Ft(y;a, t)}, (72)

where

and

h. ...,, -= ( H (Yj(a, t + At) -- Yj(a, t))"JIY(a, t) = yIj:_ (73)

H.,,..., --- limh.,,..., (74)
• at-.o At

are called the derivate moments of F_. The validity of the pdf equation (72) hinges on the existence of

the moments H,,...,,. We restrict ourselves to random processes in (70) such that all derivate moments
exist. Then there are only two possibilities for the order of the pdf equation (72) (see Theorem 7.2.1

Soong (1973)): it is two or infinity. Only the first case, corresponding to all A,,..., L with _jt.__a nj. >_ 3
being zero, is of interest. The pdf equation for this case follows from (72) as

_F 1 _3 72

c_-_ + c_)_{H_(y; a, 0Ft(y; a, t)} - (?Y_Yk {Hjk(y; a, t)Fx(y; a, t)}, (75)

which has the same structure as the classical convection-diffusion equation. An important example
for the random processes Wk is noted. If the VCkare Wiener processes, then the system (70) is of the Ito

type. The increments of Wk satisfy (see Pope, 1985; Keizer, 1987)

(AWk(a, t)) = 0
and

(AW,(a, t)AWt(a, t)) = 2Dks(a)t.

The system (70) now allows for the explicit calculation of the derivate moments H,, ...,,. in terms of
the coefficients of (70) and the properties of the Wiener process (whose increments are independent of

Y). It follows (see, for instance, Chapter 7.3 in Soong (1973)) that

Hk(y; a, t) = Ak(y; a, t) (76)

and

Hkl(Y; a, t) = B,.,(y; a, t)D,..(a)B.t(y; a, t) (77)
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hold.Thepdfequation(75)isnowsolvable,in principle,if initialandboundaryconditionsaresetup
properly.It is wellknown(seeSoong,1973;Keizer,1987),that thepdfequation(75)representsa
Markovianprocessif Wk is a Wiener process.

The conditions on the Wk are now further relaxed by only assuming that the increments of Wk are

bounded. We consider jump processes independent of the continuous random processes acting on the

Y_. The pdf equation for this case can be deduced from (71) (see Pope, 1985). All that needs to be

done is to set up the transition pdf F_ for jump processes on the right-hand side of (70). If we denote

by At/r the probability for a jump during the time interval At and denote by T(y', t!y, t + At) the

pdf for a change of Y from y' to y if a jump occurs, then it follows that the transition pdf is given

by

F_(y' ; a, t + At) = ( l -- A_) 6(y - y') + At T(y' ; a' tLy; a' t + At)z (78)

Then (71) leads to

Note that r can be regarded as the time scale of the jumps. Since continuous and discontinuous

changes of Y are mutually exclusive, we can add the corresponding contributions to the change of the

pdf and obtain the pdf equation for the system of stochastic differential equations

dY i = Aj + Bjk dWk + dJ_, j = I..... (I + 7), (80j

where dJj is the increment due to the jump process, as follows:

_3F_ e _ _ - {HikF_} + dy' Fi(y')T(y'ly) - F 1 . (81)

This transport equation is solvable if initial and boundary conditions, as well as the properties of the

continuous and discontinuous random processes, are specified.

3.3. Closure Models for the Pressure-Gradient Flux

The pressure gradient induces the flux

F,- \ax, =d,v=u,%=,_j L+--ex_.,

in velocity space. The flux due to the fluctuating pressure gradient cannot be expressed in terms of the

single-point pdf and therefore requires a closure model, It was shown in Section 3.1 that the pressure

gradient for incompressible flows depends on the velocity at all locations in physical space, and,

furthermore, it can be shown (see Hanjalic and Launder, 1972) that the correlation involving ?p'/?x,

consists of three parts given by

+ H(x), (83)

where H(x) denotes the harmonic function required to satisfy the boundary conditions. The first

contribution in (83) is called the "return to isotropy," the second contribution is called the "fast

response" and the last boundary term (the terminology was introduced in the context of second-order

closure schemes (Hanjalic and Launder, 1972; Lumley, 1978). The most advanced closure for (82) was

developed by Haworth and Pope (1986, 1987) for incompressible flows with the total conditional flux

including (82) and the viscous dissipation. No closures for the boundary term in (83), which is

required for wall bounded flows, have appeared so far.

The Closure Model of Haworth and Pope (1986). This model incorporates both the pdf flux due to the
fluctuating pressure gradient and viscous dissipation. It was developed for incompressible fluids using
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the Langevin approach (formulation III). The system (65)-(68) is now specialized to

c_X_
0t = V_,

OV_ I dP

c_t R OX_
+ vaV, + f,.

(84)

The corresponding Langevin-type stochastic differential equations (modeling the dynamics of X_ and

V_, P) were designed by Haworth and Pope as follows:

dX, = V_ dt,
(85)

( l_c(_))dt+G"(Va-(Vp))dt+(C°e)t/2dV¢_'dr,= va(v,) R

where dW_ is the increment of an isotropic Wiener process

(dW_) = O, (dW, dWB) = dt 3,a,

and e denotes the expectation of the rate of dissipation of the kinetic energy of turbulence. It follows
from (84) and (85) that

1 _P'

-R _X_ + vAV; + F" _- G,a(Va - (Va))dt + (Coe) '/2 dW, (86)

represents the closure model. Two fundamental assumptions lead Haworth and Pope (1986) to this
model:

(1) The effect of the fluctuations of the surrounding fluid depends linearily on velocity and is

locally Markovian.

(2) The stochastic term is consistent with Kolmogorov's scaling law for the inertial subrange.

These two assumptions cannot be justified on a rigorous basis. The first assumption is inconsistent

with the quadratic dependence of the fluctuating pressure gradient on the fluctuating velocity com-

ponents as is apparent from (83). Turbulence is, strictly speaking, not a Markovian process, but the

fluctuations in the inertial subrange are closely approximated by Markov processes (Monin and
Yaglom, 1975). Considering the second assumption, we note that the stochastic term of the closure

model (Wiener process) represents the stirring action of the surrounding fluid which is due to the

fluctuating pressure gradient, viscous stresses, and external forces. This agitation is not restricted to

the inertial subrange of the spectrum, whereas the model (86) takes into account subrange scaling

only. Finally, it is important to notice that the closure (86) is not applicable to bounded variables

such as the thermochemical scalars because no boundedness restriction can be implemented in linear

models. However, the closure model (86) is tensorially consistent, realizable, and relaxes to a Gaussian

pdf in the homogeneous limit. The final form of the closure model was established by constructing the

tensor Gap as a local function of Reynolds stress, mean rate of deformation, and dissipation rate. This
constitutes a closure assumption and the form chosen by Haworth and Pope is linear in these

moments, i.e.,

G_,=_ 1_,_ + _2!b_t# + H_Ij_, _(v_') (87)
_x_ '

where r is the turbulent time scale (r = k/e) and H_t_r_ is a linear function of the anisotropy tensor

b,_ - (v;v'_) _,_ (88)
(viv'_)

containing nine constants. Applying all exact symmetry and reduction properties, Haworth and Pope

succeed in reducing the number of constants from eleven to six. These six constants are then

determined with the aid of experiments in strained and unstrained homogeneous turbulent flows. The
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modelwasappliedto self-similarfreeshearlayersandHaworthandPope(1987)foundthat good
agreementwithexperimentscouldbeachievedfor homogeneousandnonhomogeneousflows,if the
constraint(Speziale,1983)of propertransformationin the limit of two-dimensionalturbulencewas
relaxed.

Closure Model for the "Return to Isotropy" Part of the Pressure-Gradient Term. It is straightforward to

construct a closure model for (82) that simulates the return to isotropy aspect of the fluctuating

pressure gradient, as Pope (1985) has shown. This is accomplished by pairwise interaction of material

points with velocities u' and if' in a sufficiently small neighborhood such that:

(1) if" --- ½(t)' + if') remains constant and

(2) the difference At) - ff - if' is reoriented randomly but IAt)J remains constant.

The reorientation is carried out with uniform probability on a sphere with radius [At)t that is centered

at ff_ in velocity space. This interaction model can be set up in the pdf formulation as follows:

consider a volume At) in velocity space centered at t) and a time interval At and let the pdf fl(_; x, t)

be approximated by N(x) elements. Let N(t)) be the number of elements with _)_< v,(x, t) < o, + Av_

for :t = i, 2, 3 and

Nit))
-- _ fl (t); x, t) as N ---, oo and At) --, 0.

N

The change of the number of elements in At) at t) during At due to the stochastic reorientation of
velocities is then

1

AN0)) = AN + (t)) -- A/V (o),

where AN+(t)) is the number of elements added to the volume At) at t) and, analogously, AN-(t)) is the

number of elements removed from At) at t) during At. The number of added and removed elements

can be established if the probability of interaction per unit time and the probability that the inter-

action of two elements produces an element in At) at t) or removes an element from this volume, are

set up. Let z denote the frequency of interaction (time scale of interaction) and let f2(t) "), t)(J); x, t)(At)) 2

be the probability of finding elements in At) at I)(i_ and elements in At) at t)cJ); then the assumption

of statistical independence of finding elements in At) at t)(0 from finding elements in At) at t)o) for

Iv I° - t)(/)[ > IAvl is invoked. It follows that the equation

f 2 ( t)OI, 100)) ----"f l (t)(i))f l (t)O)) (89)

holds in analogy to the assumption of molecular chaos in the context of the Boltzmann equation (see

Chapter 2.7 in Keizer (1987)). Finally the notion of transition pdf is introduced and

T(t),), t)cJl _,, t))At)

denotes the probability that the interaction of an element t)") with an element i>o) produces an element
in A_ at I>. It follows that

IN I_ t)(k), t)(,))AN +(t)(0) = } T ___ _ f' (t)0,)f, (u(_))T0o(J),

+ _ _k f'(t)(j))f'(t)('))T(t)(k)' t)(-0---+t)(i))} (At))3

holds, and by restricting T to the symmetry T(t) (j), o(k) _ o) = T(t) (k), t)o) _ o), we obtain

A,_ +(t)(0) = __N_. _ f, (I.)0))./.i(t)tk))T(t)(./) ' t)(k)__+t)(0)
Z )

and likewise (for the removed elements)

,a__tt).)) = N_ y_ y_ f_(t)(_)tf_(t).))T(t)(j,' t)(,)__,t)(_)l.
r j#i k¢_i
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Passing to the limit Ao --* 0, N --* _ we get

_t (_)= !{f do' f do" fl(o')f,(o")T(_',o"_o)- fl(v)t. (90)

This is the general form of the effect of pairwise interaction of elements on the single-point pdf. It is

very similar to the effect of a jump process in the Langevin equation (compare with (79)). There is,

however, a subtle conceptual difference between (90) and (79): Since (90) describes the interaction of

two elements, those elements cannot represent two realizations of a single stochastic differential

equation since different realizations cannot interact with each other. Hence, (90) is outside the scope of

the Langevin approach discussed in Section 3.2. The stochastic reorientation model can now be given
in terms of the transition pdf T. The two geometrical properties characterizing this model lead to

1 1

T(u', u" _ u) = 4re Iv' - v"] 6([u - ½(u' + u")[ - [u' - u"l). (91)

It is easy to see that T is the pdf with respect to u and that T is concentrated on the sphere with

radius ]u' - u"] centered at ½(u' + u") in velocity space. The stochastic reorientation model is equiva-

lent to Rotta's closure for the "return to isotropy" contribution to the pressure-gradient correlation on

the level of second-order closures (see Rotta, 1951; Pope, 1985).

3.4. Closure Models for the Molecular Transport Terms

The molecular transport terms (see (63)) were shown to affect the pdf fl in physical space and in

velocity-scalar space. Since the part accounting for the effect in physical space is negligible except in

the close vicinity of fixed wall boundaries, we consider only the closure models for the effect of

molecular transport on the single-point pdf fl in velocity-scalar space. The closure for the molecular

transport terms is usually called a mixing model.

Linear Models. Dopazo (1975) put forward the closure assumption that the pdf flux in velocity-scalar

space is a linear function of the probabilistic variables. This linear relation corresponds to quasi-

Gaussian behavior of the flux. It is also inherent in the linear Langevin model of Haworth and Pope

(1986), where a linear drift in velocity space accounts for the dissipation of mechanical energy

produced by random external forcing. This model has serious drawbacks; in particular, it is unable to

produce a continuous pdf in flows which are initially totally segregated. It is, however, valuable for

theoretical reasons, because it can be shown to be the short time limit of the general nonlinear closure

model discussed below (Kosaly, 1986; Kosaly and Givi, 1987).

Nonlinear Models. Models based on the interaction in velocity-scalar space of two or more fluid

volumes (elements) depend in a nonlinear fashion on the pdf fl. This can be deduced from the fact
that the interaction of two or more elements requires the probability of finding those elements in a

given neighborhood of the physical space. Presuming chaos locally, statistical independence prevails

and the probability of finding elements is given by the product of the pdf fl at the chosen velocity

and scalar values. The interaction model has already been established in equation (90) for the case of

pairwise interaction. It remains to determine the transition pdf T for the present case. It follows from

the properties of the molecular transport terms acting on the pdf in velocity-scalar space (see (63)),

that any closure model must preserve normalization and mean values and reduce variances and

covariances. Several authors have suggested expressions for the transition pdf T (see Dopazo, 1979;

Janicka et al., 1979; Pope, 1982), which can be given in the common form

T(y', y" _ y) = fj dot a(_t)6[y - (! - coy' - ½_(y' + y")], (92)

where a is a random variable governed by the pdf A(_). This variable _ controls the amount of mixing

of the properties y taking place in a pairwise interaction (recall, that y represents the collection of

probabilistic variables of the pdf). Several special models, defined in terms of A(_), have been

developed.
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Curl's (1963) Model. This model was originally derived for the pairwise interaction of droplets. It is
given by

A(_) = 3(_ - I) (93)
and

T(y', y" _ y) = 6[y - t(y, + y,,)]. (94)

The definition of A(_) corresponds to complete mixing in each interaction. If two elements with
properties y' and y" interact, they emerge with ½(y' + y") after the interaction. It is computationally
very efficient but has a serious drawback. This model is not capable of producing a continuous pdf if
the initial condition is given as a collection of Dirac pseudofunctions, as would be the case for initially

totally segregated flows (see Pope 1982).

The Dopazo Model (Dopazo, 1979; Janicka et al., 1979). The basic idea of this model is to randomize
the extent of mixing. The interaction of two elements produces incomplete mixing governed by A(:0.
The form of A(:_) can be related to the local structure of mixing regions (Dopazo, 1979), which leads
to intricate expressions for A(_). Typically the choice for A(_) is of the simplest possible form that
produces a continuous pdf for initially totally segregated flows:

A(_) = 1. (95)

This mixing model found wide application, in particular in reacting flows (see Pope, 1985; Jones and
Kollmann, 1987; Chen and Kollmann, 19891. It satisfies the mathematical constraints for moments,
but all standardized moments

(y">
m> 2,

_" (y2)m,,'2 '

diverge for m > 4 in the limit of decaying homogeneous turbulence (Pope, 1982). Hence, freely
decaying homogeneous turbulence does not approach a Gaussian pdf with this mixing model.

Pope's (1982) Model. Pope noted that the Curl and Dopazo models mix elements independent of
their mixing history. He suggested biasing the sampling of element pairs with the age of the elements
(time elapsed between mixing interactions). This amounts to including an additional probabilistic
variable age in the pdf. Hence, f*(y, s; x, t) is taken as the single-point pdf of Y and the time s
between mixing interactions and fl(Y; x, t) can be recovered as

fl(Y; x, t) = f ds fl*(y, s; x, t).

The pdf fs(s) of the age variable is obviously

L(s; x, t) = fay ./t*(Y, s; x, t).

The age distribution can be changed if the sampling of elements for the mixing interaction is biased.
The sampling bias z(s) is defined as the relative probability of sampling an element with age s. It is
normalized

f ds z(s)L(s) =
1

and the pdf of finding two elements with y' and y" is now biased according to

f**(y'; x, t)f_**(y"; x, t) dy' dy",
where

f**(y; x, t) = ds z(s)f*(y, s; x, t) (96}

is the pdf of the elements sampled for mixing. The mixing model appears now as
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The choice of the sampling bias z(s) enabled Pope (1982) to produce standardized moments that

remain bounded in the limit of decaying homogeneous turbulence.

3.5. Time Scales

The closure models for the pressure correlations and the molecular-transport terms require a turbu-

lent time scale r. It is clear that the single-point pdf fl of density, velocity, and thermochemical scalars
does not contain information on time or length scales. Two methods have been devised to provide the

necessary information on time (or length) scales.

The Mean Rate of Dissipation. The first method provides the scale information by including a

separate transport equation for the rate of dissipation:

which in turn determines a turbulent time scale

k
z = C-, (99)

F,

where k-_ ½(v_v_> denotes the kinetic energy of turbulence and C is a constant of order one. The

continuous distribution of scales in the spectrum is therefore described by a single and global scale r.

The exact transport equation for the dissipation rate e is dominated by a sensitive balance of

production, destruction, and turbulent-transport terms, which are all nonclosed. The closure of this

equation has been carried out in the context of second-order models (see Hanjalic and Launder, 1972;
Lumley, 1978; Wilcox, 1989). It represents the least-justified part of closure models on the moment

and pdf level.

Pdf Closures Includinq Scale Information. Scale information can be included in the pdf in two different

ways. Meyers and O'Brien (1981) and Sirignano (1987) suggested including a scale-determining

variable such as the gradient of scalars in the set of probabilistic variables of the single-point pdf, It

follows that the single-point pdf then provides the scalar time scale

(0,2>
r_ - r((v¢,)2 > (100t

since both numerator and denominator are integrals of the pdf of _band V_b. Carrying this idea over

to velocity, it becomes clear that the inclusion of all strain-rate components amounts to adding six

probabilistic variables, which is rather expensive in any numerical method of solution. Adding the
dissipation rate as a probabilistic variable leads to closure problems similar to the moment equations.

This approach has been suggested by Pope (1985), who gave a Langevin formulation that ensured

relaxation toward a log-normal pdf for the nonnegative variable dissipation rate in the absence of

inhomogeneity. The second possibility of dealing with the scale problem is to consider multipoint

pdfs. Ievlev (1973) and O'Brien (1980) discussed muitipoint pdf transport equations and closure

methods based on mathematical realizability conditions. Spatial multipoint pdf equations have received

little attention so far due to the enormous computational cost for their solution. However, two-time

pdf equations can be solved numerically and yield turbulent time scales. This is in fact the second way

of including scale information in the pdf as pointed out by Pope (1985) and Kollmann and Wu (1987).

The two-time pdf F2(v', t'; v, x, t) satisfies a transport equation identical to (56) as shown by Kollmann
and Wu (1987). The solution of this equation can be carried out using stochastic simulation tech-

niques Time histories of velocity are recorded and their statistical evaluation leads to integral time
scales z because

R_a(x,t,t')=fd_'fd_),),o'_Fz(u',t';_,x,t) (101)

leads to

r(x, t) = dt' R_(x, t + t') (102)
R,,(x, t, t)
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Note that the dissipation rate e can be recovered from

_(x, t) = C R_(x' t, t) (103)
T

No separate equation for a scale-determining variable has to be solved. The application of this

method to plane mixing layers by Kollmann and Wu (1987) shows promising agreement with

measured velocity moments up to order three.

4. Applications and Extensions

Pdf methods have found the widest application in turbulent reacting flows. Both premixed and

non-premixed systems were investigated. The progress made in the area of premixed turbulent

combustion was reviewed recently by Pope (1987) and Borghi (1988). Hence only the case of non-

premixed turbulent combustion will be considered here.

4.1. Turbulent Non-premixed Combustion at Low Mach Numbers

Turbulent non-premixed combustion is created by the interaction of one or several fuel streams with

an oxidizer stream. The mass fraction Y_ of species i in such a reacting mixture is governed by (8) or
(9). Bilger (1976, 1980) has shown that the energy equation written for the sensible enthaipy has, at

low Mach numbers, the same structure as the species balance. Linear combinations of mass fractions

and enthaipy (Shvab-Zeldovich coupling functions (see Williams, 1985)) can be found such that the

chemical source terms are eliminated in all equations except one. Since elemental mass and mole frac-

tions are always conserved and not uniformly constant in non-premixed flows, it follows that there

always exists at least one conserved scalar among the variables describing the local thermodynamic

state. Appropriate normalization with the values in the fuel and oxidizer streams leads to the mixture

fraction 4, which plays a central role in non-premixed combustion theory (see Bilger, 1988). An impor-

tant consequence of this formulation is the fact that the density p now becomes a local function of the

mixture fraction _ and the other thermochemical variables. The Eulerian pdf fl(d, v, q>l..... _ot;x, t) is

therefore restricted by

fl (d, v, _01, ..., qgl) = fl*00, _ol .... , _t)f(d - p(_01 ..... q_l))

and the transport equation for f* follows from (47) by integration over the values d of the density.

Denoting by P(q)l ..... (Pt) the local relation with the thermochemical scalars and setting _v = _, we
obtain the Eulerian pdf equation

..., 7:p(_o,, _-_- + + -- (p(_0, ..... _pt)qj(_0, ..... q_t)fl*)
j=l

(104)

where
!

f - 6(v(x, t) - ,_)]-] 6(g,j(x,t) - 'nk- (1o5)
)-1

Exactly the same equation follows from (56) for the Lagrangean pdf F* (the asterisk is ommitted in

the following). The application of pdf methods to non-premixed combustion problems depends

crucially on the chemical mode. The chemistry of gas phase combustion is extremely complex and

simplified model systems of reactions are therefore essential for the solvability of the resulting pdf

equation. The pdf methods for non-premixed combustion are therefore classified according to the
chemical models.

Equilibrium Models, Chemical equilibrium prevails locally to good approximation (Bilger, 1976) for

turbulent reacting flows with fast reactions, which is the case if the time scales of the reactions are

much smaller than the time scales of convection and diffusion (high Damk6hler number). It follows

(Bilger, 1976) that the local thermochemical state is then determined as the minimum of the Gibbs free
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energy for a given mixture fraction, pressure, and enthalpy (sensible plus formation enthalpies).
Turbulent combustion at low Mach numbers allows two further approximations:

(A) The pressure is constant in thermodynamic relations.

(B) Enthalpy is a linear function of mixture fraction.

The first approximation is based on the observation that, for low Mach numbers and small mean

pressure gradients, pressure fluctuations are small

o(<p,2>,_2_

Hence we can neglect the pressure variations due to fluid mechanics in the thermochemical aspects of

the reacting system. This does not hold for supersonic and rapidly expanding and compressing flows,

where the pressure fluctuations can be of the same order of magnitude as the mean pressure itself. The

second approximation can be seen to be a consequence of the energy equation. If the Mach number is

much less than unity, the dissipation function in the energy equation (13) can be neglected; if the

pressure is approximately constant, the substantial derivative of the pressure in the energy equation

can also be neglected. Hence
Dh Oq,

P Dt _- _x_

is obtained. This form of the energy equation reduces to the same convection-diffusion equation for

enthalpy as for the mixture fraction under the standard restrictions (Bilger, 1976) of the equilibrium
flame sheet model. It can be argued (Biiger, 1976) that a linear relation between h and mixture

fraction _ exists sufficiently far away from boundaries, where h and _ do not necessarily satisfy such

a linear relation. Again, this approximation does not hold for supersonic flows where @ becomes

significant and the enthalpy ceases to be a conserved quantity. It follows now that the pdf equation,
for turbulent flows involving fast reactions and low Mach numbers, contains only a single conserved

scalar (mixture fraction) to account for combustion. The value of the mixture fraction uniquely

determines the density, temperature, and composition so that expectations of these variables can be

obtained by a straightforward integration. Pdf methods have been applied successfully to this case

and the closely related turbulent transport of passive scalars (Kollmann and Janicka, 1982), but the

full power of pdf methods has not been exploited in the transport of conserved scalars. Furthermore,

the condition of high Damk6hler numbers is too restrictive for many fuels (in particular hydrocarbons

(see Bilger, 1988)).

Nonequilibrium Models. The inclusion of chemical nonequilibrium for reaction systems proceeding

with finite rates requires careful analysis of the usually complex system of reactions in order to obtain

a tractable system. The tools available for the reduction of complex systems of reactions are partial

equilibrium for selected steps and constrained equilibrium, where the progress of reactions is assumed

to take place in a series of quasi-equilibrium states subject to a set of constraints which are controlled

by the rate-limiting reactions (Keck, 1978). These tools are not perfect and considerable insight into
the detailed reaction mechanism and calculations of laminar flames are required to establish a

reasonably accurate simplified mechanism (Kee and Peters, 1987; Peters and Williams, 1987; Rogg

and Williams, 1988). Pdf methods were applied successfully to hydrogen-air flames (Chen and

Kollmann, 1989a), CO-air flames (Pope and Correa, 1986), methane-air flames (Masri and Pope,

1989; Chen et al., 1989), and propane-air flames (Jones and Kollmann, 1987; Chen and Kollmann,

1989b). Other reactants were treated by Givi et al. (1985) and Arroyo et al. (1988). We consider the
case of turbulent methane combustion in jet flames in some detail to show the properties of pdf

methods following Chen et al. (1989). The combustion of methane with air is described with the

four-step mechanism of Peters and Kee (1987), which requires five scalar variables Wj(x, t). They are
defined as follows:

q_l - _ (mixture fraction), _2 - nc.4,

_'/3 _ /lCO, t_'J4 _ /1,

tlJ 5 __. /l H
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(n denotes the number of moles per unit volume). The pdf equation (104) is integrated over velocity

space

and the density-weighted pdffl defined by

f, _ p(_0,..... _')L(_0, ..... _o,;x, t) (107)
<p>

is used for essentially formal reasons. The turbulent fluxes and the time scale are determined from a

second-order closure model (Dibble et al., 1986). The closure for the flux is given by

T,,_,,,a?I
-<p><v;l% = _o;>fl-z c=<p>.... . (108)

g v_,va _xp

The mixing model (scalar-dissipation model) is the nonlinear interaction model of Dopazo (1979) and

Janicka and Koilmann (1979) described in 3.3, equation (91). The rates of the four-step mechanism

determine the source terms qs(cPl ..... _oz), which control the motion of material points in scalar space
due to combustion. The boundaries of the set of realizable states in scalar space are rather intricate

(see Chen et at., 1989). They satisfy all the conditions laid out in Section 3.2 for the pdf formulation.

A detailed comparison of first- and second-order moments with the experiments of Masri et al. (1988)

was carried out by Chen et al. (1989). A sample of two-dimensional pdfs and characteristic functions is

presented in Figures 1-18. The flame considered is a turbulent jet flame burning methane with air
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Figure I. Pdf of mixture fraction and temperature in a turbu-

lent methane air non-premixed flame at x/D = 20 and r/D =
1.11.
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Figure 2. Pdf of CO mass fraction and temperature in a

lurbulent methane-air non-premixed flame at _-,'D = 20 and

r/D = 1.11.
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Figure 3. Pdf of CO and CH 4 mass fractions in a turbulent

methane air non-premixed flame at x/D = 20 and r/D= 1.ll.
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Figure 5. Real and imaginary parts of the characteristic func-

tion of CO mass fraction and temperature at x/D = 20 and

rid = 1.1 I.
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Figure 4. Real and imaginary parts of the characteristic func-

tion of mixture fraction and temperature at x/D = 20 and

r,/D : 1.11.
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Figure 6. Real and imaginary parts of the characteristic func-

tion of CO and CH+ mass fractions at x/D = 20 and rid =

l.ll.
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Figure 7. Pdf of mixture fraction and temperature in a turbu-

lent methane-air non-premixed flame at x/D = 20 and riD =
1.49.
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Figure 8. Pdf of CO mass fraction and temperature in a

turbulent methane-air non-premixeci flame at x/D = 20 and

r/D = 1.49.
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Figure 9. Pdf of CO and CH+ mass fractions in a turbulent

methane-air non-premixed flame at x/D = 20 and r/D = 1.49.
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Figure 10. Real and imaginary parts of the characteristic

function of mixture fraction and temperature at x,'D = 20 and

r/D = 1.49.
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Figure I1. Real and imaginary parts of the characteristic

function of CO mass fraction and temperature at x/'D = 20

and r D = 1.49.
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Figure 12. Real and imaginary parts of the characteristic

function of CO and CH 4 mass fractions at x D = 20 and

r,,'D = 1.49.
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Figure 13. Pdf of mixture fraction and temperature in a

turbulent methane air non-premixed flame at x/D = 20 and

r/'D = 2.07.
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Figure 14. Pdf of CO mass fraction and temperature in a

turbulent methane air non-premixed flame at x'D = 20 and

riD = 2.07.
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Figure 15. Pdf of CO and CH 4 mass fractions in a turbulent

methane air non-premixed flame at x/D = 20 and r/D= 2.07.
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Figure 16. Real and imaginary parts of the characteristic

function of mixture fraction and temperature at x,'D = 20 and

riD = 2.07.
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Figure i% Real and imaginary parts of the characteristic

function of CO mass fraction and temperature at x/D = 20

and riD = 2.07.
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Figure 18. Real and imaginary parts of the characteristic

function of CO and CH+ mass fractions at x/D = 20 and

rid = 2.07.
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from a coflowing stream. The inner diameter of the jet pipe is D_ = 0.0072 m and the bulk exit

velocity of the fuel methane is uo = 48 m/s. The reaction is stabilized with a pilot flame (C2H2 and

H 2) in the annulus between fuel jet and coflowing air stream (Do = 0.018 m and ua_r = 15 m/s). The

solution of the pdf equation was carried out using a stochastic simulation technique (see Chen et al.,

1989). The cross-section at x/D i = 20 is selected and results at three radial stations are presented in

figures 1 18. The pdf for mixture fraction and temperature in Figure 1 (r/D_ = !.!1), Figure 7

(r/D i = 1.49), and Figure 13 (r/Di = 2.07) show the structural change of the pdf as the radial location is

shifted outward. A significant amount of nonequilibrium is observed at r/Di = 1.49 in Figure 7, where

the pdf spreads over a range of 500 K on the rich side of the flame. Much less spread is seen on the

lean side in Figure 13. The pdf of the CO mass fraction and temperature in Figures 2, 8, and 14

exhibits the change from a narrow pdf at r/D i = 1.11 to a broad and doubly ridged form at

r/D_ = 1.49 and finally to a club-like shape at r/D_ = 2.07. The pdf of CO and methane mass fractions

in Figures 3, 9, and 15 reflects the amount of coexistence of these components. The pdf is spread over

a wide range of methane mass fractions on the fuel rich side at riD i = 1.11, but gets gradually

squeezed toward zero as the radial location is moved into the lean side of the flame zone. Figures

4-6, 10 12, and 16-18 contain the characteristic functions in separate graphs for real and imaginary
parts corresponding to these pdfs. It is noticable that the characteristic functions are much smoother

than the pdfs (no smoothing of pdfs or characteristic functions was performed). Furthermore, it should
be remembered that discontinuities of the pdf appear as oscillations with decaying amplitude in the

characteristic function. The characteristic function is real valued if the pdf is symmetric. Hence, the

imaginary part of the characteristic function is a measure for the skewness of the pdf. Finally, note

that the primed variables in the figures are the independent variables in Fourier space corresponding

to the unprimed variables in scalar space. The characteristic function for mixture fraction and

temperature in Figures 4, 10, and 14 shows a ridge, which decays with distance from the origin with

increasing speed as the radial location is moved to the lean side of the raction zone. The characteristic

function for CO and temperature in Figures 5, I1, and 17 is centered around the origin (real part)

with quickly decaying waves, except at r/D_ = 1.49 indicating stronger discontinuity in the pdf. The

characteristic function for CO and methane in Figures 6, 12, and 18 shows slowly decaying waves in

real and imaginary parts as r/D_ = 1.11 and r/D_ = 2.07, but much less waviness at riD i = 1.49 which

indicates a smoother pdf at this location.

This example shows clearly the degree of chemical nonequilibrium that can be present in a
hydrocarbon flame. The fact, that all thermochemical variables are bounded, together with the

unusual forms for the pdfs obtained in this example, demonstrates that assumptions like the quasi-

Gaussian one are untenable for scalar pdfs.

4.2. Turbulent Supersonic Flows

Compressible turbulent flows pose new and challenging problems, in particular in the area of

supersonic combustion. Pdf methods can be applied fruitfully to this type of turbulent flows, but the

research effort is still in the beginning stage (Farshchi, 1989). The basic theory for the pdf approach is
outlined here and possible ways of its application to supersonic combustion problems are discussed.

The case of compressible nonreacting flows of an ideal gas is considered first.

Turbulent Supersonic Flows Without Reactions. The balances for mass, momentum, and energy set up

in Section 2.1 are transformed to dimensionless variables. Mass balance appears in unchanged

dimensionless variables ((6); only the Eulerian frame is used in the following), but momentum and

energy balances contain several dimensionless parameters. The momentum balance is now given by

Dv_ _p 1 _z_
p - + + Bpf,, (109)

Dt gx, Re c_xt_

where

)CoLRe = P°u°L, B =- , (110)
#o u_

with Po, uo, L, #o, To, ko, fo denoting the reference values. The stress tensor appears in unchanged
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dimensionlessvariables(12).Theenergybalanceemergesasanequationfor theinternalenergye in
the form

De
2 c_G --'M_ ? 0q, (111)

= -(7- 1)(1 + 7Mop)_x_ + 7(7 - 1) Re Pe x, 'PD_

where the ratio of specific heats 7 was assumed constant and

Uo floCpo
Mo = , a2 = ";RTo, Pe = Re. Pr, Pr -=

ao ko

are the Mach, Peclet, and Prandtl numbers for the reference state. The energy balance can be recast in

terms of the specific (dimensionless) entropy

Ds_ 1 _ (_) _e _ 1 G c_T (112)PDt Pe gx, + (7 - 1) T Pe T 2 gx, "

The dissipation function q_ in dimensionless form is given by (16) and the heat flux is

where k(T) is the dimensionless conductivity. The ideal gas equation appears in dimensionless form
as

1
7Meop = --pe - 1. (113)

¢v

Single point pdfs can now be defined in several ways for compressible flows (since mechanical and

thermodynamic state are completely specified) if the velocity and two thermodynamic state variables

are known. In the present case the following set of variables is considered (for a different set, see

Farshchi (1989)): Velocity v, density p, internal energy e, and rate of volume expansion D = gv,/dx,.

The tranport equation for D follows immediately from the momentum balance

DD , 0 (1 _z,_ &,,,?v_ _ c_ (1 _p_. (ll4)

The definition of f (see (48)) is now modified as follows:

f =- 6(v -- u)b(p -- d)b(e - u)_5(D - (), (1 15)

and the pdf equation for compressible turbulent flow without reaction emerges as

+ (d2_f') - _u Re-w_-d.G + _(,;- 1 <of> - /

(116I

This form of the pdf equation contains information on a special time scale, namely the time scale of

volume expansion. The inclusion of the inverse D of this time scale is the reason for the evolution-

type structure of the pdf equation (116). The rate of volume expansion D could be eliminated, but

then a pdf equation of the hyperbolic type would result.

Turbuleht Supersonic Flows with Chemical Reactions. Turbulent flows at supersonic speed, with

combustion reactions, lead to several new problems. The mixing of fuel and oxidizer becomes a

problem of central importance because of the reduced residence times at high speeds and the effect of

compressibility to reduce the turbulence level (see Papamoschou and Roshko, 1988; Papamoschou,
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1989)and thereforetheintensityof mixing.Turbulentflow at supersonicspeedcanbemodified
significantlyby the interactionwith shockscreatedoutsidetheturbulent-flowfield and random
shocks(calledshocklets(Johnsonet al., 1988)) created by supersonic turbulent shear layers. Pdf

methods can be adapted to include the effects of compressibility and combustion. We consider first
the case of infinitely fast reactions. It was shown in Section 4.1 (Equilibrium Models) that three

variables determine the local state in this case: mixture fraction, pressure, and enthalpy. Pressure can

vary significantly in supersonic flows and enthalpy is not conserved due to frictional heating in high

shear regions. Hence, no further simplification, as in the case of low Mach number subsonic flames,

is possible. The pdf fl defined in the previous section has to be modified to include the mixture

fraction 4:

f_(o, re, a, (, q; x, t) -= (3(v - o)6(p - _z)6(h - a)O(D - ()6(¢ - q)). (117)

Ideal gas relations allow replacement of pressure and enthalpy with density and internal energy.

Hence, a pdf transport equation similar to (116) is obtained with additional terms accounting for

transport in mixture fraction space. Mean thermodynamic properties follow from the pdf .fl by

integration. The mean temperature for instance is given by

where T(_, _r, r/) denotes the local relation of temperature to pressure, enthalpy, and mixture fraction.

Extension to finite-rate chemistry can be carried out with the methods described the previous
subsection. However, no closure models have been developed so far for (116), or its counterpart for

reacting flows, and much work remains to be done.

Shock-Turbulence Interaction. The interaction of shocks with turbulence poses a formidable problem

of practical importance (Billig and Dugger, 1969). So far, mostly moment closures (Kollmann et al.,

1985) have been used to predict mean fields in the region of interaction and mean shock properties

and location were calculated with shock-capturing techniques. The application of pdf methods to

supersonic flows with embedded shocks is a new area. Since shocks are near discontinuities for finite

Reynolds/Peclet numbers (and approach genuine discontinuities as Reynolds/Peclet numbers go to

infinity), it is natural to ask what the structure of the pdf equation will be in the presence of

discontinuities. For the investigation of this question, a single balance equation for a scalar quantity

d0(x, t) is considered. The equation

_?do c_F

+ s = 0, 0) = doo(X), (I 18)

where F(@, x, t) is the flux and S(_, x, t) is the source term. This equation admits discontinuous

solution in its weak form (Majda, 1984). If the initial condition is chosen randomly from a set of

differentiable functions, then the statistical properties of the solution can be described in terms of the

pdf f_ (q_; x, t):
f - t) - fl = <f>.

If the flux F and the source S are local functions of do, and if the solution do remains at least once

continuously differentiable, then the pdf equation follows from (47), i.e.,

OF 0f,
0f, + + = (119)
e,t \o, 2 & /

However, the right-hand side is nonzero if the flux F is a nonlinear function of @. Its structure is not

suited for the analysis of discontinuities and a different method must be used for this case. The theory

of stochastic differential equations allows analysis of the scalar do taken at a fixed location x. The
temporal increment of do is then

ddo = dq) o + dP + dW, (120)

where dqbo is the deterministic and differentiable part of dq), dP is the increment due to a jump

process, and dW is the increment due to a continuous but not differentiable process. The differential
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equation(118)leadsto
_F

dO= ---dt + S dt.
_x

The source term S dt can now be viewed as the sum

S dt = So dt+ dW (121)

of the differentiable contribution So dt and a continuous but nondifferentiable part dW. The flux term

requires a closer look. If F(O) depends on • in a nonlinear fashion such that discontinuities form in
finite time from smooth initial conditions, then there exist random and discrete-time instances when

discontinuities cross the fixed location x. Hence, the derivative of the flux is the sum of a singular and

a continuous part

where [@_i denotes the jump height at time ti and O?F/?x)c denotes the continuous part. Hence,

de =_Z at , It - t,) (122)
ti<!

is the increment of a jump process and the increments in the stochastic differential equation are now
identified as

So t,ex)o)

along with (121) and (122). The pdf equation for the solution process of (120) can be deduced from

(81) as follows:

gf_- + So - f, - ,.7_p2{Bf, } + dO' f_(O')T(¢' _ O) -.f, (123)

if dW is specialized to a Wiener process. It becomes clear by inspection of this equation that the

discontinuities crossing a given location x affect the evolution equation for the pdf in integral form

appropriate for jump processes. This integral requires the probability of a jump from ¢' to ¢, denoted

by T(qY --, O), and the time scale r for the appearance of discontinuities at x. The pdf equation derived

from (120) does not provide this information, because only a single location x is considered and
x-derivatives constitute therefore new unknowns.

This example showed that the appearance of shock waves with random location and strength
produces an integral contribution to the pdf equation. It can be expected that the time scale and the

transition pdf T(¢'--* O) are functionals of the flow variables. The explicit form of this functional

relation is unknown at present.

5. Methods of Numerical Solution

The pdf fl(d, u, qh ..... _0,,; x, t) is apparently a function of a large number of independent variables.
Classical methods of numerical solution such as finite-difference or finite-element algorithms become

prohibitively expensive because the numerical effort for the solution grows rapidly with the dimension

of the domain of definition (number of independent variables). However, stochastic simulation tech-

niques can be shown to grow in numerical effort only linearily with the dimension of the domain of

definition. Hence they offer the possibility of a numerical solution of the pdf equation for a significant

number of variables (up to about ten with current computational capabilities). The development of

stochastic simulation techniques for the solution of the pdf equation is essentially due to Pope (1985).

The basic idea is to represent the pdf by a sufficiently large number of notional particles, whose

motion in physical and velocity scalar space is governed by modeled transport equations. The closure

assumptions introduced for these dynamical equations (see Section 4) correspond to the closure
assumptions constructed for the pdf equation. The numerical algorithm is based on a fractional-step

method, where in each fractional step a numerical operator corresponding to a distinct physical or
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chemical process is applied. The motion of the notional particles is thus calculated as time evolves.

The pdf is then given approximately as a histogram of the properties of the notional particles in

sufficiently small neighborhoods in physical space. A detailed discussion of this method can be found

in Pope (1985). Several variants of this basic method have appeared. Jones and Kollmann (1987) and

Chen and Kollmann (1989b) developed a hybrid method consisting of a finite-difference algorithm for

a second-order closure for the velocity statistics and a stochastic simulation technique for the scalar

pdf equation. Haworth and Pope (1987) extended their stochastic simulation technique to flows in

general orthogonal coordinate systems and developed a second-order accurate method for Ito-type

stochastic differential equations (Haworth and Pope, 1986).

6. Conclusions

Single-point pdf methods can be deduced from exact and closed equations on the functional level. The
pdf at a single point or at a finite number of points can be viewed as the Fourier transform of the

characteristic function which is in fact the characteristic functional taken at a special argument

function. This has two important implications: there are two essentially equivalent ways to formulate

the turbulence problem at a single point or a finite number of points and the pdf or characteristic

function method are part of a general framework for the statistical treatment of turbulence based on a

linear equation on the functional level. Finite-dimensional pdf equations, therefore, achieve partial and

rigorous linearization without an approximation of certain nonlinear phenomena (such as convection

and chemical reactions) by converting dependent variables into independent variables. This is in fact

the main advantage of pdf methods over moment methods.

Pdf or characteristic function methods can be set up in Eulerian or Lagrangean frames and the
choice of the frame is a matter of convenience. The single-point case was considered in detail. The

equation for any pdf at a finite number of points is indeterminate because molecular transport
[viscous and diffusive phenomena) and the pressure-gradient terms require information given at least

one additional point for their description. Hence, a closure problem arises, which was formulated in

terms of pdfs and characteristic functions. Under certain restrictions a third formulation using

stochastic differential equations can be given. Several closure models were discussed and their

properties were evaluated. None of these models is exact and they satisfy, at best, the mathematical

condition of realizability and simulate some of the physical processes of the exact terms in the pdf

equation.

Pdf methods have been applied to a variety of turbulent flows. In particular, turbulent flows with

combustion are currently an active research area. The combustion of methane with air in a turbulent

non-premixed jet flame was discussed and selected set of results for pdfs and characteristic functions
was presented. The main conclusions that can be drawn from this particular application are the facts

that pdf methods allow for the treatment of chemical nonequilibrium and that the calculated pdfs are

very far from Gaussian shapes. Hence, no assumption of quasi-Gaussianity would suffice for the
bounded scalar variables used in such a case.

Further developments of pdf methods may include compressible turbulent flows and the interaction
of turbulence with shock waves. The basic formalism for the investigation of compressible turbulent

flows both with and without combustion was laid out and a version of the pdf equation was given for

flows without combustion. The interaction of turbulence with shock waves is a formidable problem. A

simple example of a single scalar was discussed and the effect of discontinuities on the pdf was shown

to appear as an integral contribution in the pdf equation.
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Abstract

The interaction of turbulence and chemical kinetics is examined here with the emphasis on

the influence of turbulence on chemical reactions. Both nonpremixed and premixed flames are

considered. In particular, a nonpremixed methane turbulent jet flame is used to elucidate the

complex nature of the interactions between turbulence and chemical kinetics. Furthermore.

this example provides a useful evaluation of the mixing properties predicted by a probability

density flmction (pdf) method.
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1.0 Introduction

The interaction of turbulence and chemical reactions occurs in turbulent reacting flows over

a wide range of flow conditions. Various degrees of interaction between turbulence and

chemical reactions can lead to different l)tlenomena. Weak interactions between turbulence

and chemical reactions may simply modify the flame slightly causing wrinkles of flanle slu'face

(Williams, 1989). Strong interactions could cause a significant modification in h_th the

chemical reactions and the turbulence. If chenfical reactions cause small density changes in

the flow, then the turbulence is weakly affected by the chemical process but the turbulence

may still have strong influence on the chemical reactions. However, the purpose of combusti_m

is generating heat: therefore, one expects large density changes (i.e., an order of magnitude)

which can alter the fluid dynamics significantly. It has been observed experimentally that

the entrainment process in mixing layers has been significantly altered by the heat release

leading to different growth rates than those expected in constant density flows (Hermanson

et al. 1985; Dimotakis. 1989). On the other hand, strong turbulence can strain the flames to

a point that chemical reactions can no longer keel) up with the mixing process causing the

flame to extinguish. Some recent experiments by Masri et al. {1988) have revealed that local

flame extinction can occur prior to the flame blow-out limit indicating a strong interaction

between turbulence and chemistry.

To understand and quantify the complex interactions between turbulence and chemistry.

it is useful to identify the relevant length and time scales in turbulent reacting flows. An

overall characterization of the interactions between turbulence and chemical reactions can he

obtained by plotting the Damkahler number (i.e., the ratio of flow time scale and reaction time

scale) versus the Reynolds number over the whole range of length scales (Williams, 1989}.

Based on the length scales of flames and turbulence, two extreme regimes are identified.

One extreme with the flame thickness much smaller than the smallest length of turbulence

is identified as the flamelet regime. The other opposite extreme with thick flames compared

to the smallest turbulence length is identified as the distributed reaction regime. The nature

of the intermediate regimes between these two extremes is rather complex, and it is yet

to be explored. Unfortunately, many practical combustion systems involve a wide range _f

operation conditions including the intermediate regimes.

The objective of this paper is to provide a flmdamental understanding of the physics

inherent in various processes causing turbulence to interact with chemical kinetics. In view

of the importance of various practical chemical processes that occur in turbulent flows, the

present paper is devoted mainly to the influence of turbulence on chemical kinetics. To

provide a background of current theories in turbulent reacting flows, Section 2.0 reviews and

summarizes the basic physics laws for chemical reactions in mixtures of ideal gases based

on the Eulerian frame. The corresponding transformation to the Lagrangian frame is briefly
discussed.

Section 3.0 is devoted to the main discussions on the influence of turbulence on chenfical

reactions. First the influence of turbulence on a binary reacting system (two species) is illus-

trated, and the degree of influence is characterized l)y the segregation parameters. Then the

pdf transport equation of a single scalar is explored and an analytic solution is derived. This

solution demonstrates the close relation between chemical reactions and the scalar dissipation.



Next, nonpremixed flamesare consideredand tile appropriate measuresof mixednessare in-
troduced. The essential issuefor modeling nonpremixed flames is highlighted by examining
the closureproblems in the current modeling methods. In particular, the mixing models in
the pdf methods are examined in depth and future developmentsare indicated. Tile analysis
of premixed flames is limited to the flamelet regime. Two proposed theories are reviewed:
the Bray-Libby-Moss flamelet theory (Bray et al.. 1985) and the coherent flame the,)ry ,,f

Marble and Broadwell (1977). The regime of flame sheet combustion clearly indicates the

fundamental importance of surfaces embedded in turbulent flow field. Surfaces relevant to

combustion flows are introduced and classified according to the underlying transport mecha-

nisms. The relative progression velocity is shown to be dependent on a number of processes

including diffusion, chenfical rates and the local scalar gradients.

In Section 4.0, the intrinsic topology of surfaces embedded in a three dimensional space

is discussed. The effect of chenfical kinetics on turbulence is briefly described. Section

5.0 is devoted to the discussions of nonpremixed turbulent methane jet flames, which have

been studied extensively by experiments and numerical simulations. The results from a

stochastic simulation of the joint scalar pdf equation pernfit us to evaluate the mixedness

parameters introduced in Section 3.0. It is shown that the mean chemical reaction rates

can be larger or smaller than their corresponding quasi - laminar values by several orders

of magnitude indicating the strong influence of turbulence on chemical reactions. The last

section sunn-narizes the main findings from this study.

2.0 Basic Equations for Turbulent Reactive Flows

The current analysis of the interaction between turbulence and chemical reactions is restricted

to Newtonian fluids in gaseous phase, to which the thermodynanfic relations of ideal gases

is applicable. Given compositions, two independent (intensive) thermodynamic variables.

and velocity, one can determine the thermodynamic state of a reactive mixture. The gov-

erning transport equations for compositions, temperature, and velocity are dictated by the

conservation laws of mass, energy, and momentum. In the Eulerian frame, these conservatism

equations can be written based on an observer fixed at an arbitrary location ,_r in the flow

field as function of time t. For some aspects of turbulent combustion, the physics can be

better described based on the Lagrangian frame (following the fluid particles) than on the

Eulerian frame. The relations that bridge the Eulerian and the Langrangian frames will be

given at the end of this section.

Mass Balance:

Conservation of mass leads to the following transport equation for the density p(£, _') on the

Eulerian frame

Op 0

+ = o,

where the repeated indexes mean summation over all possible states.

(1)

Species Balance:



We consider a mixture of N ideal gases with its compositions described in terms of mass

fractions Yi(x_,t). When chemical reactions occur, the mass fractions. }]. are not conserved,

but consumed or produced according to their net production rates Qi, which are determined

by the reaction mechanism. Note that the net production rates, Qi, depend only on the

local thermodynamic variables: that is, Qi do not contain time derivatives of thermodynanfic

variables or their integrals with respect to time or space. The transport equation for the mass

fraction of the i-th species is then given by

DY, O.l_ N
P Dt - O.v_ +pQt, i = 1.. (2)

where J_, denotes the diffusive flux in the c_-coordinate. For nmlti-component reacting sys-

tems, the diffusive fluxes can be expressed in terms of functions containing gradients of species

concentrations and their binary diffusion coefficients. If the i-th species is sufficiently diluted,

its diffusion fluxes can be approximated by the Fick's diffusion law,

Of] (3)
•I / = -PF, O.r_,

where F i is the diffusivity of the i-th species. For the purpose of this paper, we will use

this approximation as it provides a very simple formula for calculating the diffusive fluxes in

reacting flows.

Momentum balance

Newton's second law leads to the balance equation for momentum,

Dt,_ Op Or_3
_ + _ + pf_, (4)

P Dt O.r_ O.r3

where rc,_ is the stress tensor and f,_ is the external force per unit mass. For Newtonian

fluids, the stress tensor obeys the following constitutive relation:

= _( Ov_ Ova 2_ Ov.y

where # is the dynamic viscosity. An important feature of equation (5) is the linear re-

lationship between the stresses and the rates of strain which are expressed as the velocity

gradients.

Energ;y balance and state relations

Application of the first law of thermodynamics to a differential control volume leads to the

energy balance equation in the Eulerian frame. This equation can be expressed in terms

of several equivalent forms depending on the choice of the thermodynamic variables. If the

specific enthalpy h(£, t) is chosen, the energy conservation equation can be written as

Dh Dp Oq,_ (6)
P Dt - Dt + _ - Ox--_"
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If the specific internal energy e - h- p/p is used, one can derive the following transport

equation for e
De Ou_, Oq_

P-Fi= + - at--7 (7)
where _ and q_, denote the dissipation function and the energy flux in the _-c_ordinate

respectively. The dissipation function _ is defined by

0_>, (8)
@ =_ rc,30.r3.

which represents the heat generated by mechanical dissipation due to viscous friction. The

energy flux q_ is expressed as a combination of conductive, diffusive, and radiative fluxes.

q,_ = -k ox _ p _F, n,=t _ +%"
9)

For multi-component systems, with the ideal gas assumption, the mixture enthalpy is

simply the sum of individual specific enthalpy weighted by its concentration

(10)

where f_i is the molal enthalpy and Mi the molecular mass of the i-th component. The molal

enthalpy/_i consists of two parts: the fornlation enthalpy/_0 and the sensible enthalpy

T

[_,i = ]_o +/To dT'Op(T'),
(11)

where dp(T) denotes the molal specific heat at constant pressure. The above system of

equations is completed if the ideal gas equation

i=l

(12)

(where _ denotes the universal gas constant and Mi the molecular mass) is included and the

chemical sources Qi are specified.

So far we have presented the basic conservation laws in terms of mass fraction }'i. enthalpy

h, density p and velocity _. This set of variables may not always be the most convenient

ones, and a linear or nonlinear combination of these variables could be used for the treatment

of turbulent reacting flows. For 10w Math-number flows, it has been shown (Pope. 1985), by

using a Taylor series expansion of.the state relations, that chemical sources are, to the lowest

order, independent of pressure fluctuations and that the substantial derivative of the pressure

in the energy equation (6) can be neglected except under the condition of strong pressure



variations. Consequently,for low Mach number flows, tile set of thermo-chemical variables
_i(z__,t) obey a similar type of transport equations as

P Dt - O,ra PFic).r:,J+Pqi , i= 1..l. (13)

For combustion processes at constant pressure, the total number of thermo-chemical variables

is simply l = N + 1.

Lagrangian frame

Studies of Chemical reactions in turbulent flows can also be carried out in the Lagrangian

frame (Borghi, 1988), in which the observer follows an arbitrary material point of the fluid and

monitors the evolution of this material point. This approach has some advantages because

it is the natural frame for phenomena that are dominated by time history. Hence. the

transformation rules between the Eulerian and Lagrangian frames will be given, and the

structure of the conservation equations for the thermo-chemical variables q_i in the Lagrangian

frame will be discussed briefly (Monin, 1962). In the Lagrangian frame, the independent

variables are time t and a_, which is a variable used to identify the material point. The

common choice for a_ is the position of a material point at the initial time to. The position

of a material point in the Lagrangian frame is denoted by X(a, t) which can be used as a

transformation function between the Eulerian and Lagrangian frames in the following manner

.r_ = ,k__.'(a,t) arid a = X-l(._r,t),

where X -1 denotes the initial position of the material point which moves to the position .__"at

time t. Here, the upper case letters denote the dependent variables in the Lagrangian frame

and the lower case letters correspond to the same variables in the Eulerian frame. If the

mapping function X and its inverse function X-l are both twice continuously differentiable,

both the time and spatial derivatives in the Eulerian frame can be transformed into the

Lagrangian frame, and vice versa. For instance, the gradients of a variable can be transformed

from one frame to the other frame according to (Truesdell, 1954)

O _ 1 OX,_OX._ 0 (14)
O,r_ 2j e_J'_e_"" Oa, Oa,., Oa_

and

0 ,l OX-_ l OX: 1 0

where J denotes the Jacobian determinant

(15)

1 OX_ OX, OX_o

J = -ge°J'_e_""Oao Oa,30a,,
(16)

Note that repeated subscripts imply summation and that e_,_ is the permutation tensor.

The transformation formula for the second and higher derivatives can be derived by using



Eqns. (14) and (18) repeatedly. In particular, the relation for the Laplacian is summarized
here as

The time derivatives in the Lagrangian frame are of fundamental interest becausefor a given
material point, velocity and accelerationare. by definition, the time ratesof changeof position
and velocity respectively. The latter terms appear in the Eulerian frame as the substantial
or the Stokesderivative

(1S)

The transformation rules (15)-(18) allow us to derive the transport equations for thermo-

chemical variables in the Lagrangian frame based on those in the Eulerian frame. For instance,

the transport equation (13) for @,(z__, t ) can be transformed into the Lagrangian frame by using

Eqns.(17) and (18), and the result is

O_i 1 OX_OX_ 0 (R2F, OX_OXe, O_i)+Qi"Ot - 2Re e_a_e6_ Oa, Oa_ Oa6 Re Oa_ Oa_ Oa_

i = 1..l. (19)

Note that the nonlinear convective terms disappear, but the diffusion terms become highly

nonlinear as X is a dependent variable in the Lagrangian frame. In deriving Eqn. (19). we

have expressed the mass conservation law in the integrated form as

R(g,O)
_ j, (20)

R(_,t)

where R(a,t) = p(.r, t) for .r = X(a, t). With this relation, the Jacobian J can be eliminated

from the transport equations.



3.0 The Influence of Turbulence on Chemical Reactions.

In turbulent flows, chemical reactions proceed in an environment changing randomly in time

and space. The fluctuating nature of mechanical and thermodynamic variables can have sig-

nificant influence on the progress of chenfical reactions. In this section, we will analyze this

influence in detail by examining the mean reaction rate for a single irreversible chemical reac-

tion involving only two reactive species. Under such a circumstance, the transport equation

for the probability density function (pdf) of a single thermo-chemical variable can be solved

for a non-decaying homogeneous turbulence. With the help of this solution, one can clarify

the role of the correlation between the scalar and its gradients in describing the interactions
between chemical reaction and turbulence.

The progress of chemical reactions in nonpremixed flames depends strongly oi1 the degree

of mixing between fuel and oxidizer. Turbulence can greatly enhance the mixing process and

thus increase chemical reaction rates by several orders of magnitude. Due to the practical

importance of nonpremixed flames, we will discuss in depth the mixing phenomenon and the

theories that describe this important process. Furthermore, special attention will be given to

the mixing models which are currently used in the pdf methods.

In premixed turbulent flames, the influence of turbulence on chemical reactions may

be described as the combined effects of convection and distortion of the reaction zone. We

will restrict our attention to the special case of thin reaction zones, which can be treated

as flame sheets. As the concept of treating turbulent flames as an ensemble of laminar

flamelets alleviates the need for detailed modeling of chemical reactions, we will provide

some discussions on the kinematics and dynamics of surfaces moving through the turbulent

flow field. Several types of surfaces relevant to turbulent combustion flows will be considered

and the topological and geometrical properties of these surfaces will be analyzed.

3.1 Mean Chemical Reaction Rates in Turbulent Flows.

Let us consider the transport equation (2) for chemical species i. Density-weighted average

of this equation leads to the mean transport equation for }"/as

of; of; 0
<p>(-N-+,o--) - ((.];> + <p>,'"U') + (p)£. (21)Oz_ Ox_

The most interesting quantity that will be addressed here is the mean chemical reaction rate

wi as it depends strongly on the temperature and species fluctuations. We begin with an

analysis of this dependence for a bimolecular, irreversible reaction between two species A and

B

A+B---*C.

The instantaneous kinetic source term ti, i is written as

t/,a = ti, B = --kYAYB. (22)

For simplicity, let us consider the case with a constant k first. Average'of Eqn. (22) yields

the mean kinetic source as
%.-It_'tl" -t.(f f'B + - a-B).W A



It is clear that the influence of turbulence on the chemical reaction is reflected in the cor-

relation ,A_B.V"'V" Application of the Schwartz inequality leads to the upper bound for this
correlation as

2

- - _ _'lt2_-tl2t!_'t_' <'.4-B"

With the inequality

I_]''2 _< f]( 1 - f',), i = .4, B,

which is the consequence of Hausdorff's theorem (Akhiezer, 1965) on the moments of bounded

random variables, one obtains the following relation

2

y,,v,, < ]_'A( 1 - I':4 )f'B( 1 - f'B )..4_ B --

Hence, the upper bound for tile mean chemical reaction can be derived as

I ZTAI f'B + (1 - I7:4) t's( 1 - ITs )). (23)

Therefore, turbulence can increase the mean sources _'a compared to the corresponding

quasi-laminar values tb(I'i). However, the opposite effect is also possible; that is, turbulent

fluctuations can also reduce the mean reaction rates. If the correlation v-v- is negative, it" .4 _ B

follows that

I ,at __<I,i,(f,)l,

which is the upper bound for the mean chemical source term. We can obtain a lower bound

for Iwal as follows. If the reactants A and B be totally segregated, the joint pdf of t:4 and

YB is given by

f(yA,/,'s) = (1 - t'A)6(_A)N 1 -- .tJs)+ I::._N 1 --,_a),_(/,'B). (24)

This pdf represents a special situation where species A and B do not coexist at the same spatial

location, but they may have nonzero mean values. It can be shown that the fluctuations are

maximal in this case. Physically, the flow consists of randomly distributed regions with

only species A or species B but not with both, and the two species are separated by an

infinitely thin interface. Straightforward integration of the instantaneous chemical reaction

rate weighted by the pdf over the entire domain produces the following correlation

.4_B -----

It is clear that wa = 0 means zero reaction rate, because no mixing at the molecular level

has taken place. We conclude that the mean reaction rate can have a wide range of values

(but limited by the upper and lower bounds) which may be radically different from the

corresponding quasi-laminar values.



Next, the casewith. a temperature dependent chemical reaction rate will be c(msidered.

We assume that k is given by the following Arrhenius form

rE

/_'(T) = b0 exp(--_-). (25)

One parameter to measure the influence of turbulence on chemical reactions is the ratio of

the mean reaction rate and its quasi-laminar counterpart as defined by

R- (26)

This expression can be further written in terms of of TE/_" and the pdf of T as ( Borghi. 1989)

j_0 O'G
R = dTf(T)g(T: T, TE) -- O, (27)

where the monotonically increasing function g is defined by

g(T) - exp{- TE ( 7" TE ). -TE
-7- _- i)} :exp(_- exp(--_),

(28)

and it has the following properties: g(0) = 0, g(_/') = 1 and g(_) = exp(TE/T') >_ 1. Due to

the exponential dependence of chemical reaction rate on temperature, g(T) increases rapi(lly

with temperature. The rate of increase is given by the derivative of g,

dg TE
1 -d--=(T) = "_-g(T)' (29)

which has the value of TE/T 2 at the mean temperature 2_. Under the condition of a large

activation temperature with a low mean temperature, strong temperature fluctuations lead

to large ratios R >> 1, because the product of g(T) and the pdf f(T) increases drastically

when T _> 2". It is also noted that the ratio R could be less than unity, but a reduction

in the mean reaction rate can occur only when the pdf f(T) is highly biased toward the

low temperature side. These properties of the ratio R illustrate the effect of temperature

fluctuations on the mean chemical reaction rate. The combined effect of temperature and

composition fluctuations on the mean kinetic source terms will be addressed in Section 5.0

for a turbulent diffusion jet flame.

For high Reynolds number flows, the pdf transport equation for the set of l thermo-

chemical variables governed by Eqn. (13) in the Eulerian frame or Eqn. (19) in the Lagrangian

frame can be written as (Kollmann, 1989)

o/, oL o+ + •••,v,).f,)} =
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o((.)(,{15,= all )ax

-(:I (%_.1%= ;,).f_).

where the density-weighted pdf fl is defined l)v

30)

,fl =
D(_I,"" ,,_1)

(p)
f_(_l,'", _t: x__,t). 31)

and the scalar dissipation rates e0 in the conditional expectations are defined by

F 0_ i 0_S
_" - b-22O.,'o

32)

with Fi = 1' i = F. For homogeneous turbulent flows, this equation reduces to

,,011 ,/):_--5i+ _= . (Oj(,Zl,...,:t)?_)}=

I I 02

--(P) E E C):jOCflk ( (_Jkl_J = :j)fX). (33)
.i=1 k=l

The special case with a single scalar variable (l = 1 ) is of particular interest. Integration over

the scalar interval [-oc, _s] leads to

--_-f + Q(:)f, + {(el II tI/ = "_).fl} : 0, (34)

where FI is the distribution function associated with the pdf fl- For statistically stationary

turbulence, the time derivative can be eliminated from Eqn. (34) and the result is

d

Q(_)f,(:) + -_{ (Elll:).fl(:)} = O.

This equatuion can be solved analytically, and we obtain the following general solution

(35)

<qll:)f1(,P) = CN. exp{- /_#
&;' Q(_;') }, (36)

(e11[,;')

where the constant CN is deternfined by

exp{- f__ d:'_}' < I.-,/:N -1 = d_ (37)
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so that the integration of ]1 over [-_c, _c] is unity. This solution has some interesting prop-

erties. First, we note that the influence of turbulence on the scalar pdf ]1(_) is expressed in

terms of the conditional expectation of the scalar dissipation rate <e111_>. Applying scaling

arguments to the scalar fluctuations, one concludes that ell and _ are statistically iudepen-

dent at high Reynolds numbers based on the Kolmogorov's hypotheses. If this is true. it

follows that the pdf fl(_) and its width are determi,led essentially by the source Q(_:) and

<e11>. A source Q(,_) that is linear in _ can lead to the Gaussian pdf as time goes to infinity as

expected in a homogeneous turbulence. However, this is true only for an unbounded variable

_. For bounded variables, such as mass fractions or concentrations, both the source Q and

ell must be correlated with ,_ so that the pdf is confined to its allowable domain. This should

be true even in the limit of infinite Reynolds number.

3.2 Nonpremixed Reacting Systems:

For nonpremixed turbulent flames, the effect of turbulence on chemical reactions is primar-

ily through the enhancement of mixing. Mixing is defined as the inter-diffusion of different

components on the molecular level. The mass fraction (mole fraction or concentration) of

component i changes due to the unbalance of diffusive fluxes passing through the bounding

surface of a control volume. The flux defined in Eqn. (3) and its divergence in Eqn. (2)

are determined by the spatial gradients of mass fractions at the current time t. Hence, the

Eulerian frame is most appropriate for the description of molecular diffusion. Chemical reac-

tions on the other hand depend only on the local thermodynamic state, and, therefore, they

are best described in the Lagrangian frame. It is clear that there is no definite preference

to the Eulerian frame or the Lagrangian frame for the description of the combined effects

of convection, diffusion, and reactions. So far, most theoretical treatments have been based

on the Eulerian frame, but several recent approaches use the Lagrangian or a ,nixed Eule-

rian/Lagrangian formulation. Here we will consider the diffusion process in the Lagrangian

frame first, and the mixed formulations will be given next.

The diffusive flux in the Lagrangian frame can be expressed as

1 OX30X.y OYi

J_ = --{Ror,e_.,j_e_._ Oa., Oa_ Oa6'
(38)

which contains the Lagrangian deformation tensors, OX,_/Oae, and the Lagrangian gradi-

ents, O/Oa_,. The Lagrangian deformation tensors can be further expressed in terms of the

Lagrangian deformation rates as follows:

OX_ fot 0I_Oa_ - (_ + dr 0---_-(a, r).

Substitution of this expression into Eqn. (38) leads to

j_ I _0' c)l/3= -.sRoFie,_Z._e_,,o(bZ,1 + dr_-_-a (a, r))

12



(6.y,o+ dr_a (a.,r))Oa--- _ (39)

This equation shows that the influence of velocity fluctuations on the diffusive flux is through

the deformation rate histories along the pathline of a material point a_. It is evident that

in turbulent flows, the fluctuations of flux .l n are due to continuous changes of the mass

fraction gradients and tile deformation rate tensors. Note that the mass fraction gradient is

time independent if the mass fraction }'i itself is a material property (i.e.. no diffusion and

no sources). Hence, the temporal fluctuation of cg};/Oa_ is solely due to the diffusion proc_'ss

and various production sources, such as chemical reactions. If the density changes are small_

the fluctuations of the Lagra_ngian deformation rate tensors are dictated essentially bv the

conservation of momentum and mass. For large density fluctuations, significant modification

of OX_/Oa_ is likely to happen due to the large fluctuations in the thermodynamic v_'iables.

From system dynanfics point of view, the evolution of turbulence can be described as a

point in the phase space spanned by the Lagrangian position X(a) and the pressure P(a). If

the Reynolds number is sufficiently high, there exists a region in the phase space that attracts

all the states of turbulence irrespective of their initial conditions. This phenomenon exhibits

several interesting properties, which also appear in the strange attractors of low dimensional

dynamical systems. In particular, the turbulent flows are shown to be very sensitive to their

initial conditions. Consequently, the magnitude of the deformation rate tensor, OXo/Oa_,

can be very large because material points that are initially close to each other can drift far

apart due to turbulent motion.

The mixed formulation of the transport equation for the mass fraction Yi is given by

R _y(pF,r-_-_)+RQ,(a,t). (40)

This equation shows that following a material point, the time rate of change of _t_ is balance(1

by the diffusion process written in the Eulerian frame and by the chemical reactions expressed

in the Lagrangian frame. The mixed formulation reduces to the kinetic rate equation for a

closed reacting system in the absence of diffusion. The interpretation (but not the value) of

the diffusive term is frame dependent. In the Eulerian frame only the mass fractions t; are

dependent variables, and hence they are stochastic: in the Lagrangian frame, both }'i and

X___are dependent variables, and hence both are stochastic. This suggests that modeling the

processes in Eqn. (40) can be carried out in the Lagrangian frame with ratios of random

variables as in Borghi's M.I.L. (1988) model.

Complete mixing is achieved if there is no scalar fluctuation. Therefore, nonzero scalar

fluctuations indicate imperfect mixing, and they can be used as an indication of the degree

of mixing (the mixedness) (Bilger 1976). In the Eulerian frame, the transport equation for

the scalar variance can be expressed as following

0I,'"2 i 0Y"2, _ 0
(P)T +

, (41)
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where

0Y,
(p}g,- (pr,Ooc," Oa. ) (42)

denotes the density-weighted expectation of the scalar dissipation. As the scalar dissipation

is always positive, it is clear that the scalar dissipation term reduces scalar variance: hence.

it promotes mixing. This can be better described in terms of the mixing parameters defined

as

aia-- I75; , i_<j. (43)

It is instructive to consider a binary reacting system which is homogeneous at the macro

scales but not at the micro scales. For such a system, the following mathematic constraints

are satisfied

Y," + = 0, 5, + = 1,

0
- O, and 5] = constant.

oqx a

Using the first two conditions, the mixing parameters for a binary system can be written as

Jt-_ , 0_<Oe12-- < 1. (44)

If the two species are totally segregated (i.e., no nfixing at the molecular level), a 12 is simply

equal to one as the maximum value of ]'l ''2 is ];'l( 1 - I_'1). In the opposite case of perfect

mixing, o_12 = 0. Using the transport equation (41), a time evolution equation for 312 can
be derived as

0_12 __ ___1_1(1 -- 51),
0t

which shows that _12 is always decreasing in time as the mixing process progresses at the

molecular level. For reacting systems of multi-components, the values of aij are not simply

bounded by zero and unity, and they may even change signs in the flow field according the

correlations I_;"_t_ '' (see Section 5.0).

Mixing Models

The pdf methods (Pope, 1986; Borghi, 1988; Kollmann, 1989)offer an attractive framework

for theoretical and computational studies of turbulent reacting flows since they do not require

modeling of the mean chemical reaction rates. We will restrict our discussions to the single

point pdf method. In particular, the joint scalar pdf method will be considered because

the central issue in this paper is the influence of turbulence on chemistry. It has been

demonstrated that the effect of turbulent mixing can be described by

__) l l 02

mix J=l k=l

(43)
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which shows the joint scalar pdf is transported in the scalar space due to mixing and, more

importantly, the shape of ]l becomes narrower in time. It is worthy noting that the transt)ort

equation (45) represents a time-inverse diffusion process in the scalar space with the diffusion

speed determined by the conditional expectation of the scalar dissipation rates. Consequently.

the initial value problem posed by Eqn. (45) is difficult to solve by the traditional finite-

difference methods as the numerical errors tend to grow exponentially. Fourier transformation

of Eqn. (45) leads to the equation for the characteristic function m l

l l

dt /m,.r 1=1 k=l

where m l is defined by

!

ml(_'t) = /'"/d_l'"d_l]l(_.._ 't)exp(iZ kJ_j)'

j=l

and the asterisk denotes convolution. Restricting our consideration to 1 = 1 and assuming

(e_ t_) independent of _, we obtain an analytic solution for fl as

/0'fl(p, t) -- V/_ dkm;(t_',O)exp{il,'_+k 2 dr@l,}(r)}.

This solution indicates that if rnl is initially non-Gaussian, high wave-number components

can be amplified exponentially in time. This implies that the numerical errors in the high-

wave-number range will grow exponentially, and eventually the solution becomes unstable.

The major conclusion is that closure models for mixing should not be based on the time-

inverse diffusion equation. Consequently, most mixing models developed so far are of integral

form.

Integral Mixint_ Models

Any closure model for the mixing term in Eqn. (45) should possess as many as possible the

important features of the exact term. Strict mathematic requirements demand the model to

satisfy the following realizability conditions:

1. The pdf remains non-negative.

2. The pdf remains normalized.

3. The domain of definition of the pdf remains unchanged. (The values of pdf do not migrate

outside the allowable domain, which are often dictated by the conservation laws.)

These realizability conditions ensure the solution of the modeled pdf equation satisfy all the

basic mathematic constraints of a pdf. The physics of mixing must be introduced as additional

requirements for the closure model. The exact equation (45) can be shown (Janicka _t al.,

1979; Pope, 1985) to reduce the higher moments of a pdf such that in the limit t ---* _c

the Dirac pseudo-function is produced. A closure model that is able to fulfill the above

requirements can be constructed as follows. Three basic assumptions are made here:

15



1. Mixing proceeds by pairwise interaction of fluid volumes (elements, notional particles)

that are small compared to the volume of the flow domain.

2. Local chaos prevails so that the probability of finding _7 >_ 2 fluid volumes with specified

properties in a given (small compared to the flow domain) neighborhood is the product

of the n pdf vahles for these properties.

3. The time scale for the mixing process is independent of the scalar values involved in tile

mixing process.
It can be shown that a closure model that satisfies all these three assumptions has the following

form (Kollmann, 1989)

(46)

where _ denotes the domain of allowable scalar space. The essential properties of the mixing

model are contained in the transition pdf T and the time scale r. A general form of the

transition pdf T can be cast as (Pope, 1985)

01 1 r _,T(_',_"---, _)= daA(a)6[_- (1 - a)£' - _a(_ +_ )], (47)

where A(a) is a pdf defined within [0, 11. The random variable a controls the amount of

mixing taking place during the pairwise interaction. The construction of the mixing model

is now reduced to the specification of A(a) and the time scale r. If we set

A(c_) = 6(o_ - 1), (48)

Eqn. (47) reduces to Curl's (1963) droplet interaction model, which is computationally

efficient but has well known deficiencies (Kollmann, 1989). Dopazo (1979) and Janicka et M.

(1979) suggested
.4(c_) = 1, (49)

which randomizes the extent of mixing and overcomes the deficiency in Curl's model. Sub-

stitution of Eqn. (49) into Eqn. (47) yields a new form for T as

,I'l ¢"-¢' I for [¢',¢"] (50)
T(,¢',_" _

-- /. 0-- -- otherwise.

Both, Eqn. (49) and Eqn. (50) indicate that an equal probability is assigned to any value in

the interval [_', _"]. This model has been applied to a wide range of flows (Pope, 1985: Jones
and Kollmann, 1987; Chen and Kollmann, 1989,a,1990), but it causes the higher normalized

moment s,
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(m >_4) to divergeas time goesto infinity in decayinghomogeneousturbulence (Pope. 1982).
A possible remedy for this defficiency has been suggestedby Pope (1982) as follows. If tile
probability of finding elementswith the values9 at a given location is biasedwith the ageof
the element (time elapsedbetweenmixing interactions normalized with an appropriate time
scale), then bounded limits for the normalized moments pr,, can be achieved.

Time Scales

The time scale r for the mixing event to take place depends on the turbulent flow field and
the scalar field. If one assumes that the time scale ratios between the turbulent flow field and

the scalar field,

R -_ @11> i"

are constant and independence of kinetic sources, then the time scale r can be given by

r = C.- (52)

with C denoting a constant of order unity. This assumption was found to be reasonably

good for nonreacting free-shear flows, but it becomes questionable for reacting flows (Borghi,

1988). There are several possible approaches to improve the model of time scales. First, the

transport equation for the scalar dissipation can be included in the closure model (Lumley.

1978 and Dibble e* al. 1986). Therefore, the effects of heat release on the scalar dissipation

(or on the time scale) can be included in the model (Dibble e* al., 1986). However, this

approach has not been successful. Alternatively, the time scale information can be carried by

one of the variables in the pdf. This can be done by using the two-point pdf approach (Ievlev,

1973; Pope, 1985; Kollmann and Wu, 1987) or by including the scalar dissipation rate in the

pdf (Meyers and O'Brien, 1981; Pope, 1989). Both approaches are currently under intense

development.
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3.3 Premixed Reacting Systems

The theory of laminar premixed flames is well developed (Williams, 1985). Laminar premixed

flames with a high activation energy are thin, and their structure consists of a preheat zone

with negligible combustion and a thin reaction zone (Pope 1987). The laminar flame speed

UL and the thickness eL can be determined entirely by the diffusivity F and the chemical

time scale r c (Borghi, 1988). Flames with low activation energies are more complex, but

the notions of flame speed and flame thickness are still valid. With the help of u C and (L.

the structures of turbulent premixed flames can be analyzed in the Klimov-Williams diagram

(Borghi, 1988; Williams. 1989), where the ratio kl/'2/u L over It/e L or the Damkoehler number

It
D_ - (53)

over the Reynolds number

k_It
Re - (54)

v

is plotted (k denotes the kinetic energy of turbulence and It the turbulent macro-scale).

Several important regimes can be identified. For large values of It/e L with low to moderate

turbulence levels, turbulent premixed flames can be described as an ensemble of wrinkled

flames. The effect of turbulence is essentially through the increase of flame front area per

unit volume without significant changes in the flame structure. As turbulence intensity

increases, pockets of fresh gases can form inside the burned product if the rate of pocket

formation (determined by turbulence parameters) is approximately the same as the rate of

pocket consumption (determined by chemical and turbulence parameters). This regime is

called the corrugated flame regime (Peters, 1986). As turbulence intensity increases further,

thick flames with their thickness larger than the micro scale of turbulence can form, and

turbulence can significantly modify the local flame structure.

As discussed above, the effect of turbulence on premixed combustion ranges from distor-

tion and wrinkles of thin flame fronts to complex interactions with thick combustion zones.

Predictions of premixed turbulent flames have been explored by Pope (1987) with pdf meth-

ods, which are particularly well suited for the latter regime. However, traditional moment

closure methods have been useful in treating the flame sheet combustion regime. Two models

will be discussed briefly.

The BLM Model

The BLM model (Bray, Libby and Moss, 1985) proposed the concept that the progress of

the reactions can be described by a single scalar variable c with certain assumptions. If the

reaction zone is thin, then the pdf of the reaction progress variable can be approximately

given by

t) = + - 1) + (55)

with positive o_, 3, 7 and the mathematic constraint

a+3+'_=1.
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The coefficient o_ is the probability of observing reactants at the point (z_.,t); 3 is the proba-

bility of finding products, and 7 represents the probability of a state within the reaction zone

(flame sheet). The most important assumption in this model is

"t<< 1, (_6)

which is valid for the thin flame sheet regime. The BLM model makes the full use of this fact

so that the statistical moments can be expanded in terms of 7. It follows that

a= 1-,3+O(?)

and

- + 0(7),
l+r_

where r is the heat release parameter. The model consists of the transport equations for the

mean progress variable _ and its variance. These equations need to be modeled, and their

solutions determine the local pdf for c to first order in 7. Here, only the equation for _ is
considered

(0____ 0_ ) O ((p)t,_c----5,,)+{p)tb ' (57)(P) =

which contains two terms that need modeling, the turbulent flux ,_.-"-" and the mean kinetic

source u3. Detailed modeling of the turbulent flux will not be repeated here and it can be

found in Bray, Libby and Moss (1985). Since w(0) = w(1) = 0, one needs to estimate the

contribution from the continuous part of the pdf fc (flame sheet contribution). A special

form of jfc can be constructed if the reaction zone consists of randomly convected, wrinkled.

but unstrained laminar flamelets (Bray et al., 1985). More recently, Bray et al. (1989) have

proposed to model the mean reaction rate directly. Two approaches have been considered

for this direct closure method. First, the mean reaction rate is represented as the product

of the crossing frequency of the interface at a given point and the chemical reaction rate

per crossing. Second, the mean source terms can be treated as the product of the average

number of flamelets per unit length (in the neighborhood of the given point) and the chemical

reaction rate per unit length. In both proposals, the essential issue becomes the modeling of

the topology and geometry of an interface embedded in a turbulent flow. This aspect will be

discussed in the next section.

The Coherent Flame Model

The basic concept of the coherent flame model proposed by Marble and Broadwell (1977) is

the notion of laminar flamelets, which are transported and distorted by the turbulent flow

field, but retain their identifiable structures. This concept provides an alternative way to

model the mean reaction rate if'i- The key parameter in calculating the tbz is the mean flame

surface area density El defined by (Darabiha et al., 1989)

_S
E l = limav-0 _SV'
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where 6S denotes the surface element and 6V is the volume element centered at .r. This

definition deserves further explanations. First, the reaction zone is represented by a surface

on which the instantaneous reaction rate assumes a prescribed (nonzero) vMue. For finite

Peclet and Damkoehler numbers, this surface is a differentiable manifold. Let's consider

an arbitrary point (I_, t) in the flow domain and let I£_(r) be a sphere of radius ,' (w_lume

element 6V) which is centered at z_. If the sphere intersects a flame surface, then we can find

a radius r small enough so that the intersection of the surface with the sphere looks like a

plane. Based on the properties of a differential manifold, there exist two possibilities for the

instantaneous value of E I. One possibility is .r being on the surface; then

7rr 2 1

E I --_ ._r 3 r

The other possibility is ._r being outside the surface; then there exists a radius ro such that

for all r <_ to. Hence, E I can have only the values oc and zero. It is not clear whether

or not E I has a mean value, because the value z<) must associate with the zero probability

in order to produce a nonzero mean. However. random variables can be constructed with

the properties of EI leading to a nonzero mean but no higher moments (Kollmann. 1989).

Therefore, the properties of El are dependent on the characteristics of 6S/6V as the vohmle

6V is shrunk to the point x, under consideration.

The transport equation for the mean surface area per unit volume can be derived from

the equation for the surface element with the assumption that the correlations on the right

hand side exist, and the result is

-- \lJ/_c_f)- (p}nan;ts_a-.f,<P>\at + ] ( ""
(5S)

where n is the normal vector of the surface and .s_ denotes the strain rate. The source

term poses an intricate closure problem as turbulence can change the flame surface area by

straining, extinction, and mutual annihilation (Darabiha et al., 1989). The proposed closure

model for the mean reaction rate is then given by

t'[_i = UDi_I, (59)

where VD, is the volume consumption rate of species i per unit flame area and it is obtained

from calculations for a laminar .flame. Several refinements of Eqn. (59) can be made by

including the dependence of VDi on the strain rate and temperature, but they will not be

addressed here.
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3.4 Theory of Embedded Surfaces

It becomes clear from the previous sections that a certain class of surfaces embedded in tur-

bulent flow fields plays a fundamental role in determining the progress of chemical reactions.

Experimental data obtained from mixing layers and jets indicates that the topology of _ur-

faces embedded in turbulent flows can be rather complicated (Dahm and Dimotakis. 1985:

Dimotakis, 1989). A closer examination of the topology and geometry of surfaces is therefore

warranted. Surfaces can be defined implicitly by

- = o,

where _(x, t) is a variable relevant to combustion. For nonpremixed combustion, • can be

the mixture fraction and _o its stoichiometric value. For premixed combustion • can be the

reaction progress variable and _o being its value at the maximum reaction rate. The variable

is governed by the transport equation (2) which includes effects of convection, diffusion

and production. Equation (2) leads to the following classification of iso-surfaces:

(A) If the flux J_ and the source Qi are zero, then the surface is materially invariant. If the

velocity t,_(x, t) is sufficiently smooth (at least once differentiable), then the topology of

the surface is preserved in time, because the solution of Eqn. (2) provides a diffeomor-

phism of the surface. However, the geometrical properties (curvature, torsion etc.) of

the surface can change drastically.

(B) If the flux J_, is nonzero but the source Qi is zero, then the surface is not materially

invariant but moves through the fluid with a speed determined by the local diffusive flux.

The Fick's law Eqn. (3) for the diffusive flux implies that J_, is normal to the surface.

It is possible that the topology of surfaces can be changed due to diffusive reconnection

(Ashurst and Meiron, 1987).

(C) If both J/_ and Q, are nonzero, then in addition to the relative motion through the

fluids, the surface can change its area due to the source term Qi. Both topological and

geometrical changes are possible.

(D) The surface moves with an arbitrarily defined velocity relative to the fluid. This is the

most general case, in which both self-intersection and loss of orientability of the surface

are possible. Furthermore, only the progression velocity on the surface needs to be

defined.

Relative Progression Velocity of Iso-surfaces

The relative progression velocity at which the iso-surface moves relative to the fluid in case

(C) can be expressed in terms of the diffusive flux and the source strength. To this end, we

introduce the indicator function I(x, t)

1 for _(£,t) _> _o (60)I(£,t) = 0 otherwise,

and define the relative progression velocity V(x, t) as

,,
l/'na _ Oct -- t, a,
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'* is the velocity of the iso-surface, and n_ is the normalwhere vo denotes the fluid velocity, t o

vector of the iso-surface defined by

It can be shown (Byggstoyl and Kollmann, 1986) that

OI
-- = nolV, la( - 'Po) (63)
Ot _'

and
OI

0z_

Combining Eqns. (63) and (64) one obtains

(64)

OI OI
_--+ ,,'. - 0, (as)
O_ a _a

and
DI

D---_= VlV l ( - _o). (66)

From Eqn. (60), we can also express DI/Dt as

D I Dg2
= 6(_ - _o)_ (67)

Dt Dt

Eliminating DI/Dt from Eqn. (66) with Eqn. (67), we get an expression for V as

V- 1 (O.I_,+Q_),_ _(x,t)=q,o (68)
IV l

with [VqJ[ ¢ 0. Equation (68) shows that the relative progression velocity depends essentially

on the gradient of _(x,t) at the location of the iso-surface. The treatment for case (D) is

different because the relative progression velocity is given and an expression for v_ or its mean

value is derived. This problem has been studied by Kerstein et al. (1988) for the special case

with a constant V in homogeneous turbulence.

Topology of Embedded Surfaces

Properties of surfaces that do not change under continuous one-to-one mapping are topo-

logically invariant (i.e., a homeomorphism). We note first that the iso-surfaces that are

interested in turbuleut combustion are 'closed', i.e., they do not have boundaries (holes) as

a consequence of the smooth (differentiable) variation of the defining scalars. Now let's con-

sider the homeomorphisms defined only on the surfaces. The relevant topological properties

are (Seifert and Threlfall, 1934; Rushing, 1973):
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(1) Cormectedness: The number of closed, connected surface components that form the

complete surface.

(2) Orientability: An orientable surface possesses at each point a unique normal vector

or a unique orientation (sense of rotation). Closed, non-orientable surfaces which are

embedded in a three-dimensional Euclidean space must intersect themselves.

(3) Genus: The number of closed cuts that can be made without disintegrating the surface

into disconnected parts. For instance, a sphere has a genus value of zero and a torus has

a genus value of one.

Surfaces can be shown to be homeomorphic to spheres with attached handles (tori) and

crosscaps (Moebius bands attached to circular holes in the sphere). Furthermore, surfaces

can be triangularized and then analyzed by calculating the Euler characteristic function

\ = V- E + F, (69)

where V denotes the number of vertices, E is the number of edges and F is the number of

triangles. -_ is a topological invariant (hence the same for the original and the triangular-

ized surface) and changes with the number of handles and crosscaps. It can be shown that

two surfaces, either orientable or non-orientable, are homeomorphic if they have the same

characteristic function (Seifert and Threlfall, 1934).

Surfaces embedded in a topological space, such as in a three dimensional Euclidean

space, can also be classified according to their structures. This leads to the consideration

of homeomorphisms defined for the embedding space and for the surface. Surfaces with the

same orientability and characteristic can be further classified according to the types of knots,

links and braids present (Moran, 1983). Links and braids may be of particular importance in

turbulent shear flows with and without combustion. Flow visualizations in plane mixing layers

show that braided vortical structures are the linking mechanisms between the large-scale

structures and the lateral vortices. Furthermore, in these braided vortical structures, there

are tube-like domains, where viscous interaction occurs. Therefore, topological change can

take place if these braided structures are brought together sufficiently close by the convection

process.

Gibson (1968) pointed out the importance of extremal sets of scalars in turbulent flows

and showed that they appear as isolated points (local extrema and saddle points) and lines

(saddle lines). Consequently, Kerstein (1982) used this result to construct a model for an

iso-surface as the boundary of the Voronoi tesselation created by the extremal points. The

Voronoi tesselation is essentially a simplicial complex and, therefore, it is amenable to the

methods of algebraic topology. Here, a fascinating problem arises which warrants future

investigation: the relation of interface topology to the distribution of extremal points in

turbulent flows. Closely related to the geometric topology of interfaces is the measure and

dimension of such surfaces. Practal concepts have been proposed (Gouldin, 1988; Srinivasan

et al., 1989) to explain the variation of surface area with scales, but the question is far from

settled (Miller and Dimotakis, 1989).
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4.0 The Influence of Chemical Reactions on Turbulence

The dynamics of turbulence can be affected by chemical reactions if the heat release due to

chemical reactions is large enough to cause noticeable density changes. This implies that

significant density fluctuations can be expected for strongly exothermic gas-phase reactions.

The turbulent velocity field can be modified by the chemical reactions via two processes. First.

density fluctuations can modify the acceleration of fluid particles; that is, the light-weight

fluid particles are accelerated faster than the heavy-weight fluid particles even under the

same pressure gradient and the viscous stresses. Second, the pressure field can be modified

via the state relation, which links pressure, density and temperature together. These two

processes are difficult to model and they will not be considered here (Pope, 1985; Borghi,

1988; Williams, 1989; Bray et al., 1989).

5.0 Pdf Modeling of Nonpremixed Methane Jet Flames

The interactions of turbulence with finite rate chemistry will be examined here, particu-

laxly, in turbulent nonpremixed methane jet flames. As our current computer capabilities

do not permit a detailed chemical scheme to be incorporated in turbulent combustion mod-

els, simplified reaction mechanisms are needed. Peters and Kee (1987) developed a simplified

mechanism for methane-air combustion based on the assumptions of a steady state for certain

intermediate components and the partial equilibrium for two reaction steps. The simplified

mechanism contains the following four global steps

CH4 + 2H + H20 _ CO + 4H2, (I)

CO + H zO _- C02 + H2, (II)

2H + M _ H_ + M, (III)

02 + 3H2 _ 2H + 2H20 (IV)

With the assumption of equal diffusivity, this mechanism requires five scalar variables _j (x, t)

to determine the local thermodynamic state. They are chosen as follows: _1 = _ (mixture

fraction), _I'2 = riCH4, _23 =- rico, g24 = n, q2.5 -- n H, where n denotes the number of moles

per unit mass. To explore the pdf methods, we use a combined scheme which consists of

a Reynolds stress closure (details are in Dibble et al., 1986) and the joint scalar pdf model

for Eqn. (30). The Reynolds stress closure provides the mean transport properties and the

time scale that are needed in the pdf model. In return, the pdf yields the mean density. The

turbulent flux in Eqn. (30) is modeled by a gradient type formula

,7,,,,OL (70)

We incorporated the nonlinear interaction model to model the effects of molecular mixing

as discussed in Section 3.2 for Eqn. (46). The effects of chemical reactions on the pdf

are modeled by by moving the pdf position in the scalar space according to the chenfical

reaction rates of (I) to (IV) (detailed expressions can be found in Peters and Kee, 1987).
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The boundariesof the set of realizable states in the scalar space are rather intricate but can

be defined mathematically (Chen et al., 1989). A detailed comparison of the first and second

order moments with the experiments of Masri et al. (1988) can be found in Chen et c,l.

(1989). The numerical solutions enable us to evaluate the mixedness parameters defined in

equation (43) and to compare the mean reaction rates with their corresponding quasi-laminar

rates.

The mixedness parameter a d is plotted at x/D = '2-0 for several combinations of reactants

as shown in Fig. 1 to Fig. 3. We note first that the a 0 are not positive definite for nmlti-

component (more than two) mixtures in contrast to those in a binary mixture. It follows

from the definition of a u that negative values indicate that both components exceed the

local mean, whereas positive values indicate that one of the components exceeds the local

mean and the other component is below the the mean. Positive mixedness values indicate,

therefore, the lack of mixing and negative values correspond to the state of good mixing.

Fig. 1 reveals the degree of mixing between CH4 and several other components. It is

clear from this figure that CH4 is not well mixed with the intermediate components and the

product I-I20 in the inner parts of the flame, but they become mixed in the outer parts of

the flame. Therefore, reaction (I) proceeds in the forward direction if CI-I, is weU mixed with

H and H20 and in the backward direction if CH4 is well mixed with CO and I-I2. However,

the forward rate is larger than the backward rate over the cross section (see Fig. 4). The

mixedness of CO with the components involved in step II is shown in Fig. 2. It is clear that

mixing is good for all three components in the outer parts of the flame.

The mixedness of 02 with the active components involved in step IV is positive through-

out the jet indicating the lack of mixing. The comparison of the mean reaction rates with

the quasi-laminar rates for the four steps I to IV is presented in Fig. 4 to Fig. 7 showing

clearly the strong influence of turbulence. In particular, the second step in Fig. 5 and the

third step in Fig. 6 illustrate that turbulence can greatly enhance the average rates. On the

other hand, turbulence can also reduce the average rate compared to the quasi-laminar rate

as evident in Fig. 7.
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6.0 Conclusions

The interaction of turbulence and chemical reactions is a complex phenomenon that can cause

significant modification in both the turbulence and the chemical reactions. For chemical reac-

tions with negligible heat release, this interaction has only one direction; that is, turbulence

will modify the chemical rates, but the reactions have no influence on the flow field. However,

the purpose of combustion is to generate heat in a short period of time; therefore, combus-

tion processes usually cause strong density variations. Hence, the turbulence will experience

strong influence by the chemical processes and vise versa.

The influence of turbulence on the chemical reactions is the main topic in this paper.

First, the basic governing equations of the dynamics in turbulent combustion are outlined

in the Eulerian frame. The corresponding transformation to the Lagrangian frame has been

presented with the aid of the Lagrangian position field. It was shown that in the Lagrangian

frame, the transport equation for a thermo-chemical variable does not contain the nonlinearity

due to convection, but the diffusive flux appears as a highly nonlinear process depending on

the time histories of the Lagrangian strain rate.

The influence of turbulence on the chemical processes is expressed by the statistical

moments that appear in the mean reaction rate. Upper and lower bounds for the mean

reaction rate were obtained for a binary mixture. It was shown that the mean reaction rate

can have values radically different from the quasi-laminar values (reaction rate at the mean

properties). The influence of temperature fluctuations on the mean chemical reaction rate is

shown to be significant for reactions with large activation energies at a low mean temperature.

Furthermore, it was shown that the pdf equation for a single reactive scalar can be solved for

a homogeneous turbulence. The solution indicates that for bounded scalar variables, a scalar

and its dissipation rate must be correlated in order to satisify the realizability conditions.

The analysis of nonpremixed flames illustrated the important role of mixing in deter-

mining the progress of chemical reactions. Mixedness parameters were introduced and the

mixing models for the single point pdf methods were discussed. The main conclusions drawn

from the studies of nonpremixed reacting systems are that the mixing models must satisfy

realizability conditions and that they must represent the effect of turbulent mixing correctly

at least for lower order moments. Furthermore, the current model for the turbulent time scale

associated with the mixing process is rather crude as it neglects the possible modification due

to heat release. Several approaches for overcoming these shortcomings are indicated.

The treatment of premixed systems was restricted to the flame sheet regime. In this

regime, the effect of turbulence is essentially through the distortion of the thin flame sheet

leading to increased flame surface area. Predictive models for premixed turbulent flames are

discussed.

The interaction of turbulence and chemical reactions in nonpremixed and premixed com-

bustion can also be described in terms of the effects of turbulence on surfaces, in particular,

the flame surfaces. Hence, the basic dynamical and topological properties of surfaces were

introduced. It was shown that for flame surfaces, both the diffusive flux and the chemical

sources can alter the relative progression velocity of such surfaces. Finally, the topological

classification of embedded surfaces was discussed briefly.

We used nonpremixed turbulent methane-air jet flames as an example to illustrate the

26



mixing properties predicted by a pdf method. It was shown that the mean reaction rates
can be larger or smaller than the quasi-laminar rates by orders of magnitude due to the
effectof turbulence. From the computation results, the predicted mixednessparameterswere
examined showing that they are not positive-definite as in binary systems.
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Fig. 1. Mixedness parameter aii in a turbulent methane-air nonpremixed flame at x/D =

20 using the four step mechanism of Peters and Kee (1987) for:

1 = CH4 and H. 3 = CH4 and CO.
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Fig. 2. Mixedness parameter aij in a turbulent methane-air nonpremixed flame at x/D =

20 using the four step mechanism of Peters and Kee (1987) for:

5 = CO and H20. 6 = CO and H2. 7 = CO and C02.
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Fig. 4. Mean kinetic source (full line) and quasi-laminar source (broken line) in a turbulent

methane-air nonpremixed flame at z/D = 20 for reaction I of the four step mechanism of

Peters and Kee (1987).
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1.0 Introduction.

Kraichnan's idea to apply mappings as tool in constructing closures for pdf equations (Chon

et al. 1989, Kraichnan 1990, Feng 1991, Pope 1991, Valifio et al. 1991) proved very successful

for the case of a single scalar variable in honlogeneous turbulence. It is not vet clear h(,w

powerful this approach is for the case of more than one variable (Pope, 1991). The ri_orolts

theory on the functional level requires the determination of the probability measure g(_w',nin_

the dynamics of turbulent flows. This measure is defined in a function space, that contains

the set of all realizable flow fields. It can be constructed as a measure relative to a Gaussian

measure or any other reference measure. It follows that the probability measure can t)e

regarded as the image of a Gaussian measure. The underlying mapping contains, the,'ef(_re,

the essential information on turbulence. It is apparent that turbulence can be viewed as the

mapping of appropriately defined function spaces. The structure of those function space._ and

the mapping relating them deserve closer scrutiny.

The notion of a mapping can be exploited in two distinct ways:

I. The mapping is known and both the original and the image variables are the unknowns.

The prime example for this case is the linear map provided by Fourier transform which can

be extended to functionals. The resulting equation for the case of the probability functional

is the Hopf/Kolmogorov equation for the characteristic functional.

II. The mapping is unknown and either the original or the image variable is known. The

prime example for this case is I{raichnan's method which is based on the well known relation

between mapped and original pdf depending on a single variable

where c2 = X(r#,t) and fG(r#) is the Gaussian pdf. The extension of this method to the

multi-dimensional case and to functionals is not obvious. The task of constructing a mapping

between function spaces can be daunting and it is instructive to consider several exaniples to

illustrate the properties of mappings. Fourier transformation, regarded as solution of the so

far unspecified mapping equation, provides an example for the mapping of the space L 2 of

square integrable functions defined in R 3 onto itself

_(._-) - 1 id'r exp(ix.z)@(.r)(2rr)3 ....
R a

where E,z E R 3 and if(x), @(E) E L_(R3). The image field _(_) is a complex valued square

integrable function defined on R 3. The value of the image field _I' at a location -2 E R a

depends on the values of the argument field q' at all locations ._r E R _. Hence has the

mapping induced by Fourier transformation functional (or nonlocal) character. Mappings of

this type are denoted by

_,(_, t) = x{_(.);_., t]



where the semi-colon separates functional arguments from parameters.

is provided by

_(z) = exp(_(5))

A different example

which has local character. Locations in argument and image fields are the same and a change

of the argument field _(f) at a location _' ¢ - has no influence on the value (_f the image

field at _. Local mappings are denoted by

g,(_, t) = X(_(Y(_, t)).=_-,t)

where

y: R a + R '3

is a mapping of R 3 onto itself. It is clear that the computational effort for functional and local

mapping can be expected to be widely different. The comparison of a functional mapping

with the probability functional indicates that the image domain for the mapping is a function

space whereas the image domain for the probability functional is the unit interval. This

indicates that the computational effort for the calculation of the mapping may be equal or

larger than the effort for the probability functional. However, it should be noted that the

Gaussian characteristic functional can be set up explicitely and the notion of the determinant

can be extended to the case of countable infinite many variables (see Muldowney, 1987 and

Skorohod, 1974), thus offering an avenue for theoretical investigations.

Three aspects of turbulence involving mappings will be discussed in detail before the

mapping equation is investigated. First, the basic laws (mass and momentum balances) are

set up as equations determining a mapping of the flow domain at a reference time onto the

domain at a later time. This mapping is a diffeomorphism as long as the smoothness of the

solution of the Navier-Stokes equations is insured. In addition, incompressible flows generate a

measure preserving diffeomorphism due to the particular form of mass balance. This mapping

is, however, fundamentally different from the mapping employed by Chen et al. (1989) who

map the phase space spanned by the solutions of the Navier-Stokes equations onto a reference

space equipped with a Gaussian measure. Second, the properties of Gaussian measures are

reviewed and finally transformations of the function space containing the solutions of the

Navier-Stokes and Euler systems are discussed.

The mapping method suggested by Chen et al. (1989) is the reviewed for the one-

dimensional case. It is shown that it corresponds to a convolution of the characteristic

function and the mapping equation for it is derived. The multi- dimensional case is then

considered in detail.



1.1 The basic laws as mapping equations.

The basic laws for a single incompressible fluid are intr_duced in the material (or Lagrangean)

frame. The independent variables in tile material frame are defined as time 0 < t < T and

label a E A, where A is the label space to be defined. The label identifies uniquely a material

point in the flow field. There are many ways of defining a label and for each definition a

different set of variables emerges. The present definition for the label space .4 is tile position

of all fluid material points at a reference time zero. The label space is now the fluid volmne
at the reference time zero

A- {X: Position of a material point at t=0} (1.1)

and the mapping X • .4 + D(t) is assumed to have the following properties (Kreiss and

Lorenz, 1989): )/.'(a_,_') is for _a E A and a nonzero time interval a smooth (continuously

differentiable) function satisfying

(i) =
(ii) Ifa # _bthen X(a,t) 5/: X(_.b, t) for t >_ 0.

(iii) The mapping g_ --, X(a_, t) has a smooth inverse X -1 .

The set of independent variables in the material (sometimes also called referential frame for

the present chioce of the label space) frame consists therefore of time t and the position

a) at time zero. Note that the size of the time interval for which the mapping X remains

smooth is related to the existence of smooth solutions of the Navier-Stokes equations. There

is no general existence proof for three-dimensional flows except for finite time intervals, whose

length depends on the inital data, and we must keep in mind that the smoothness may break

down in finite time and the conditions (ii) and (iii) for the mapping of the label space onto

the fluid volume at later time may be violated. The position .k_..'(t,a_) of a material point is

considered a dependent variable in the material frame.

The time rate of change keeping the label variable a constant is in the material frame

the time rate of change measured by an observer moving with the material point. It follows

that velocity is defined by
OX

=_

and acceleration by

= (1.3)

Mass balance in classical mechanics is the requirement that mass cannot be created or de-

stroyed and appears as J = 1 or

OX_ OX 30X_ = 6 (1.4)

where J denotes the Jacobian of the mapping X(a, t). Momentum balance is the consequence

of Newton's second law and can be shown to govern the temporal evolution of the mapping
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t) by

02Xe, 1 OXj OX._ OP v OX; OX_ 0 (OXc. OXo 02X_,
Ot 2 - 2R e_'a_e_'_ Oa, Oa_ Oa_ + _Eaa.,e_,,.; Oa, Oa._ Oa_ "_a_ Oa._ OaoOt ) + G,

{1.5)

It follows that the material frame version of the Navier-Stokes system set lip in terms ()f I)O-

sition and pressure fields can be regarded as the equations determining a Ineasure-1)reserving

mapping X(a_,t) : D(0) + D(t) (where D(0) (lenotes a measurable subset of the flow ,lo-

main at time zero) of the flow domain at the reference time onto the domain at a later time.

This mapping is smooth as long as the solution remains smooth. The role of the pressure in

this system is to preserve the measure of any measurable subset of the flow domain. This

property is lost in compressible flows where the vohune of a materially invariant sut)set of

the flow field may change in time. The notion of mappings can be applied to compressible

flows with suitable extension of the variables to include mass and energy densities.

The mapping equations (1.4) and (1.5) show that the dynamics of a nonlinear phe-

nomenon can be viewed as the evolution of a mapping governed by a nonlinear system of

equations. The solution of (1.4) and (1.5) allows to determine the image of any measurable

subset of the original flow domain as a function of time.

2.0 Basic Considerations.

The notion of mappings can be extended to relations between function spaces and a general

equation for such a mapping can be derived. It is worth noting that the mapping equation

for a single variable governed by the linear diffusion equation and taken at a single point is

linear (Chen et al., 1989 and Pope 1991) but not exact. It will be shown in chapter 4.0 that

this is due to the requirement that the single point statistics of the image of the Gaussian

random fields is equal to the single point statistics of the unknown turbulent fields. The

extension of this closure procedure to multi-variables and nmlti- point pd.fs and the passage

to the functional level requires some preparations. This will be done in the present chapter.

It is well known that the Lebesgue measure has no extension to infinitely many variables,

hence there is no obvious extension of the cdf equation (derived in the next chapter) to the

functional level since it contains multi-dimensional integrals whose limit for infinitely many

variables is not defined. The pdf equation on the other hand can be (at least formally)

extended to the functional level. It follows that the pdf equation and its Fourier transform

(characteristic function) are the appropriate starting point for the development of mapping

methods for the multi-dimensional case. Furthermore, it is possible to set up explicitely the

Gaussian measure for infinitely many variables in terms of its characteristic functional and

there exists a well defined equation for the characteristic functional of the turbulence measure.

It is possible to define properly measures relative to a Gaussian measure (Skorohod, 1974). If

the turbulence measure is defined in such a way, all that is left to determine is the distortion

of the Gaussian measure necessary to produce the turbulence measure. This is nothing but

a mapping of the function spaces containing the Gaussian fields and the turbulence fields. It

is clear that these two function spaces justify attention.
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2.1 Function spaces.

Consider a compact flow domain denoted by D(t) C R :_ with boundary 0D(t). The boundary

is assumed to be orientable and sufficiently smooth such that a normal vector exists nearly

everywhere. The surface area for the boundary c)D must satisfy

< /dA <0
d

OD

and the volume of the flow domain is obviously bounded. D(t) is the domain of definition for

the turbulence fields. The domain of definition for the Gaussian reference fields is b = R 3.

Cartesian coordinate systems are introduced in both domains and denoted by x_. E D(t) and

E/) respectively. Various functions of scalar, vector and tensor character will be defined on

D and called turbulence fields. Functions defined on/) will be called reference or argument

fields. Various sets of fields will be considered and they will be embedded in various function

spaces. The most important Banach and Hilbert spaces will be discussed briefly. A class (_f

Banach spaces is given by

LP(D) -_ {_(x)]_ : D _ Rt,O [ p <
d

D

with norm

{fII IIL,,O)
,J

D

which is a Hilbert space for p = 2 with scalar product

(¢I,,_) - f d.r_(x) _(z__)
J

D

A different class of function spaces can be constructed by requiring differentiability up to a

certain order. These spaces are called Sobolev spaces and are defined by

Wm'P(D) - {¢I'(z__)lD_O C LP, I_I < m}

where D _ - O/Ox, denotes the differential operator and

D _ -
...

with lal - _--_y=_ a, and a, >_ 0. The norm is defined by

II 'llm, ,D-- IID° 'II ,(O)
I,_1<_

For p = 2 a Hilbert space is obtained with scalar product

I_,l<__mD

The general properties of these spaces can be found in the literature on functional analysis.
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2.2 Local and global mappings.

The aim of this chapter is to discuss the properties of mappings of a separable Hilbert space

= {4,(z__')l&: D --+R 1,_ continuous} with scalar product ((I,, 'i,)H onto another separable

Hilbert space H (separable means that the space has a countably infinite basis). The elements

of/I are the reference or argument fields and the elements of H are the image fields. The

basic requirement for mapping methods is that the statistics of the image fields agree at

least at one or several points with the turbulence fields. If they agree on all points of the

flow domain an exact solution of the Hopf-Kolmogorov equation (see Vishik and Fursikov.

1988) is obtained. This aspect will be discussed in chapter 4.0. The space H containing the

image fields is embedded in the Sobolev space Hm(D). The mapping X • H --+ H(D) will

be time dependent because the image fields must be time dependent in order to simulate the

properties of turbulent fields. The mapping is denoted by

_(_,t) = x[_(.);_,t]

where the semicolon separates argument fields from parameters. The argument field _(£) E

H, the values of the parameters ._r E D(t) and t >_ 0 determine uniquely the image field

_(z__,t) E H(D) and the argument field, the location in the flow domain and time can be

varied^independently. Consider now a modified argument field (i,(_) + eh6(__- )--o) where
h_ E H, e > 0 and

>0 for I,/'-&o[ < 6 > 0h_(_-io)= -
0 otherwise

and h E C_(R 3) such that

/ d2_.h6(_ - = I_-o)

R 3

holds. The image fields at the same location x and the same time t are denoted by q'(.r, t) =

X[_i'(.); .__r,t] and _(._r,t) = X[_(.) + eha(.); .__,t]. Two cases are now possible:

(A) 'I*(x,t) _ l,(z_,t) for nearly all _ E l'l and e > 0. The value of the image field at a

given location x, E D(t) depends .on the values of the argument field at nearly all locations
E _. This implies that X depends on _(.) in functional fashion.

(B) There exists a subset (lo C _ such that _(z_., t) = q,(x_,t) holds for z_."E f)o and

#a(_ - _o) < C6 a with C < oo as 6 --+ 0 for all ._r E D(t). This implies the existence of a

relation

= Y(,_r,t)

such that the mapping X is local, i.e.

,_(z_.,t)= x(4(K(.r__,t));_,t),

The special case of a local mapping

,I,(_, t) = x(4(L(z_, t)); t)

is called £-autonomous and

O(_, t) = X(4(L'(£, t)))

x_ • D(t)

is called fully autonomous.
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2.2.1 Properties of global maps.

Global maps are characterized by the property that tile change of the argument field in a

small neighbourhood of any point _o E D leads to a change of the value of the image field

at a fixed location ._r E D. This functional dependence indicates that it must be possible

to express the mapping X in terms of a flmctional. This can be achieved using a special

construction which leads to a subset of the set of global mappings. Consider an arbitrary

functional

R'

The value A[_,] is then independent of .__E D and derivatives with respect to location vanish.

Suppose now that A is Frechet-differentiable in/:/

_, h) = _-01im_e A['_ + eh]

for _, h E/:/. Then is the first Frechet-derivative of A a generalized function of the location

x_". It follows that

_A
= x'[4,(.): e/;r

provides a mapping of the argument space/2/into some function space H*(/_) because keep-

ing the argument field fixed and varying the location x E D produces a scalar field whose

smoothness properties depend on the functional A. A second step is required for the construc-

tion of global mappings based on functionals. We need to define a mapping }..2"" D(t) ----, /9

which is bijective, local and sufficiently smooth. Then we can express the location in D(t) in

terms of the location in/) by

= Y(._r,t)

If the functional A is defined in such a way that the fields

are always contained in the space H"(/9) for m _> 0 and

mapping _(,.r.r, t) of the domains we can define a mapping

generated by its Frechet-derivative

combining the derivative with the

by

-

It is clear that global mapping do not require a mapping of the domains and for this reason

is the present construction rather special.
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2.2.2 Properties of local maps.

The value _(x, t) of the image field depends on the value of the argument field _ at a unique

location _ = }[(x, t). If the argument field is modified at any other location no change of

q_(x,t) is observed. Hence is

t)= x(%(Y(.,_',t).._r,t)

a strictly local map. Differentiation of the image field can be carried out using the rules of

standard calculus. For instance, the time derivative emerges as

04 x OX OX
7 (-'tl-

and likewise for the spatial derivative. Higher derivatives follow from repeated application of

these operations.

2.3 A reduction property for multi-dimensional mappings.

The closure problem for mappings can be viewed as the construction of a global map corre-

sponding to the local map which is to be determined as the solution of the mapping equation.

The relation of the global map to the local map needs clarification since they act on the

same class of reference and turbulence fields. If the global map is known we can calculate

the statistics at any number of points as the image of of Gaussian statistics. Hence. we can

calculate the statistics at a single point which implies that there exists a relation between

the mapping for a single variable and the mapping for many variables containing the single

point. This relation can be obtained as follows. Pdfs posses a well known reduction property

given by

fl(_N) --= / d_l "" / d,_N-lfN(_I,''',_N)

-- _ --,'2_

which must be retained if the pdfs are transformed Gaussians. Let the local mapping be

X : R 1 --+ f_, where f_ denotes the range of the scalar defined at a single point in the

flow field D(t), and the global (N-dimensional) mapping X N : R _v --+ f_x then are the

one-dimensional pdf and the N-dimensional pdf given by

fa(q)
f(g) -- ox

and

f x( g_ , " " , g.,v ) =
fG(ql," "" • qX)



respectively where 9 = X(q) and _y = X(ql,.-.,,/m) hold. Application to the reduction
property for pdfs leads to

i i (O'¥i_'f(;(tll'''''ll'\')

.fG(q)aX07-__ d_' ""__ d_:v-tdet\_J,v-' &t\f °x' _o,,,}.v

where the subscripts on the Jacobian matrices indicate the rank. Since the Gaussian reference

measure is the product of N one-dimensional measures it follows that

,'_3 0(3

ON --1

0"--_" = i d_l"" i d_N-`

--00 --_

]]'det\ 0,1, } ,v-1 fG(rli )

i=,

holds. Denoting by dGi -- dqifG(qi) the differential of the standard Gaussian measure (zero

mean and unit variance) we get

_ det \ o,7, )1 m-,

(_)--1-- / dG,.., i daN_,

as reduction property for mappings. It is worth noting that this relation can be extended to

infinitely many variables since the Gaussian has a well defined limit. It is easy to show that

the reduction property appears in the form (note that q _= rim)

= 7"/1 "'" r/N-I N r/1,''',ON
i

-- "Jo _ e-,_

-1

if the Jacobian matrices are triangular. This particular form of the reduction property

expresses the one-dimensional map for the N th variable qN in terms of the global or N-

dimensional map for all variables r/a,..., qN- It depends obviously on the Gaussian reference

measure.
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3.0 Transport equations for pdfs and cdfs.

Transport equations for pdfs and cdfs can be obtained using the notions of step flmctions
and pseudo-functions. The starting point are the basic differential equations set up in the

spatial (Eulerian) frame with respect to a Cartesian system of coordinates. Mass balance is

given by
COUc_

-0 (3.1)
COx_

and momentum balance by

Ova, COy,, 1 COp CO2v_

--_ + t, j cox 3 p COx_ + u COx3COxs (3.2)

A passive scalar obeys
00 COO CO20

+ v_&r_ - Q(O) + FCOx_Ox 3 (3.3)o-7

The flow domain is denoted by f_ and its boundary by 0f_. Consider now N distinct points

x_(i) E f_. We derive first the cumulative distribution function (cdf) of the values of velocity

a,as scalar at those N points in the flow domain. We define the step function

-f',v = IIiN=lH(_i - 0(x(i),t))H(L'i - v_(x_(i),t)) (3.4)

where N denotes the number of points in the flow field, H denotes the Heaviside function

1 for x >_ 0H(x)- 0 forx<0

and the step function of a vector argument is the product of the step functions of the com-

ponents. It is easy to show that the expectation of _f-',; is the cdf FN

(FN) -_ FN(EI,'",£N, c21,'", q_N; :_r(1), "'" , x__(N), t) (3.5)

of the variables v(£ (i), 1), O(x_ (0, t) at the N points in the flow field. The necessary tools for

the derivation of the transport equations are the spatial and temporal derivatives of the step

function -f-'N. Implicit differentiation leads to

OFN t)OPN )OFN
Ot -- i =1t Ot ' ' + } (3.6)

and

OFN Ovo (z_(j) t) O-f'_,J

where the summation convention applies to Greek subscripts.

(3.7)
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Pressure.

The pressure P(!_, t) can be eliminated from the momentum balance according to

_t' ct Or" 3

-Ap - O,r3 0.ro

with boundary conditions

on c3fL The solution of this Poisson equation for p(.r, t) can be given in the form

0t, o 0t,3
1 dgG(x_,v) + B(x_, t) (3.8)

p(x,,t) - 47r - - Og_ Og_
fl

where G(x,_v) = Ix- y1-1 is the Poisson kernel and B(x,t) is a harmonic function ensuring

that the boundary conditions are satisfied. It follows from this solution that pressure depends

in functional form on velocity, it depends on time in autonomous form via velocity and it

depends on location ._cparametrically. Hence p(.r, t) = p[v(., t); z__]and

Op c9_:

_- =/bit_,(., t),-_-(., t): z_] (3.9)

and the Frechet-derivative of pressure with respect to velocity is given by

5 )p[v(., t); ._r]= ---1 02G(x_,g_..)v.3(g,t )
6v_(_g,t 27r OyaOg 3 -

if no boundaries are present. This derivative represents the change of pressure at I_ clue to a

change of the velocity component t,o at g.

Transport equation for P_¢.

The transport equation for FN follows from the differentiation rules and the Navier-Stokes

system. We get

OPN N N ¢ OPN "
--Or + Ev_(x(')- ,t)Ox____ ;cOFN+ E{FA(, ) _ + vA(i)v OF_v}Ot,i_

i=1 i=1

X ^

t=l

^

= 0 (3.10)

This equation can be viewed as the condition that the value of the cdf T',,¢ remains constant

for points in phase space (the product of flow domain, scalar space and velocity spaces) that

move with the velocity (v_(x_ (i), t), FA(i)(I ' + Q((I,), v/Xri)v_ - Op/Ox_).
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Preliminary form of the transport er[uation for the cdf F,_,.

Averaging of the transport equation for FN leads at once to the equation for the cdf F\. Its

preliminary form is given by

0F,q '_ t) 0FN. N <I>0P._ )
--- (_- , _)+ Z(r(zx<')0_ + _(Vo (')

i=1 i=l

"J oP,j O, , OPx
+Z((O(_,)_)-(ox_;, p[_(.,_);_ 0-7n2,,)}=0 ¢3.11)

i=l

All expectations appearing in this equations need to be evaluated to provide expressions

containing the cdf Fk. If k _< N the term is called closed otherwise it is nonclosed and

represents an additional unknown.

Flux in physical space.

Mass balance holds at every point x_(t) and this implies

--=,OA'r_ o (_o(_(i),t)pN >
<_'_(_-")'t)Ox_,) Ox(2) -

The flux is now according to the definition of the angular brackets given by

(,,.(__('),t)P,_) =

f da(__('))..,f d_(_(_))_o(_('))P,,.fN(z(__(')),...,a(x('_));__('),.••

The definition of -f'N implies

,x_ (N), t)

v N
9Zl

(t'l'('r(i>'t)PN) : i dt_l"" i duNv_fN(t--_i'''"

-oo -oo

,_N;X(_),.-.,X_ ('¢),t)

The relation

leads to

04N FN

fN -- Ov_'"O (}N

i

(v<,(x (i), t)P_v) S i i OFN_ = dvov_ Ova,
--00

and partial integration results in

i
u_

_ = v,_FN - dv,_FN

-- O0

(3.12)
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which is closed. It can be shown easily that it is consistent with the corresponding expression

in the pdf equation.

Diffusive flux in scalar space.

The flux in scalar space is given by (A (ilq)_f"x) which is by definition

{/h(i)O['N} = / dOl ... / dcX / d(A(')O)

AI'l,:I, II)_t H(_._ _ ,:I,J)H(t_,J _ tAJ )fx+l(,I,1,... v j,/k('lI,, t)

Introducing the conditional pdf fc defined by

fN+l(O1 ....VN /_(i)q_)= fc(/_/i)¢lq_l,...,_N)fN(Ol ...,£N)

leads to

'.Pl --.vN

(A(i)(I)FN) = dq _1-.. dv (/_X ¢l(I)(x(1)) = (I)l, .." ,L_'(x_. {u) ) = UN) 04i';_'.'-'_U N

--_ --OQ

(3.13)

as final result. A new unknown (A(i)¢l...) appears and the flux in scalar space is, therefore,

nonclosed. Consistency with the pdf equation follows at once from the equation above by

differentiation. It is important to notice the fundamental difference between the cases N = 1

and N > 1. The term actually appearing in the transport equation for the cdf is

which is for N = 1 obviously a differential term

0 (ZX.)Opx)_ 0 f
0_, 0qoi

0F1
d¢'(A(')¢tO(x_(') ) = Oi) 7

given by (see Pope, 1991)

0 (A(i)O_,l) _-- (A(i)q)lq)(x(i)) = _i)0F1
0_i - 0_ i

whereas for N > 1 the integral character is preserved since the single derivative removes only

one of the integrals.

Viscous flux in velocity space.
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The viscousflux in velocity spaceis completely analogueto the diffusive flux in scalar space.
It follows from (13) that

V N

0 FN

(/_(/)Vc,/_N> = dO 1... dL, N(A(i)vc_[O(x(1) ) = O1 ...,v(.__r (N)) =L,N>04r---N2N

(3.14)

holds. The flux is nonclosed and consistent with the pdf equation.

Source flux in scalar space.

The source term Q(O,_v) is assumed to be a local function of the scalar O(x_(i),t) and the

velocty tA(x (i), t) It follows from (3.13) that

04N FN

<QxI_N> : / doe ... / d_NQ(Oi'_i)o4-_--7"OL_N

--,'_D --'DO

holds. This expression can be simplified if the source term Q depends only on • i and £'

because partial integration removes the differentiation with respect to all the other variables

and we get

'._i __ui

(Q-f'N) = dO' d£iQ(O',v ') O_ i (3.15)
-- _ -- ,_

which is a closed term. For the special case that the source Q depends on 0' only we obtain

for the derivative appearing in the cdf equation

0 OFN

o_ (QT'N) = Q(_si) 0_---_.

Consistency with the pdf equation becomes evident by differentiation of (3.15).

Pressure flux in velocity space.

It follows from the functional dependence of p on the velocity v that the pressure gradient is

a nonlocal function of v_. Hence we can apply (3.13) and get

p ^

< FN> = f dO'
-- ¢")0

0 N

Oxa
-- 00

= 01 ...,v(x (N)) = v' )o_.i::-.--_t_, N (3.16)

This result is nonclosed.

Cdf equation in terms of conditional fluxes.
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The expressions(3.12) to (3.16) canbe usedto obtain a new versionof the transport equation
for the cdf FN

i
b' a

o--i--+ {_'; (,_= Oz_ O,r_ ) "
-- "2_

N

N ,,_l '..2'

/=_I{F_ / d(1)l "'" / dl_N< A(

-oG -oc_

0
+u_-rS,/d+l.-./a,_"(A(

Ot, o_

04 N Fx

i)(I)l(_(__j 1)) = (I_l,..) 0¢ 1''" 0t_ 'N

4 N
0 Yx

_'_I+(,g '>) = +', ) 04-r :: :_x }

i

+ i__l{ ___i f d@i } dt_,iQ(O' L,' 04FN

v N

0 Op _))
04 N FN

= +_") o_ :::_u } = o (3.17)

This version is not suitable for the limit N --, _c since it contains the N-dimensional Lebesgue

measure for which no limit exists. However, the transport equation (3,17) has several note-

worthy properties. First we note the special case of a single scalar in homogeneous turbulence

with Q(@). It follows that the cdf for the single scalar satisfies

OF OF

+ {r<zxol+= _) + Q(_)}-_- = 0 (3.18)-5-

which is non-integral with respect to the scalar value iz. The hyperbolic equation (3.18)

expresses the fact that the value of the cdf remains constant for points moving with the

velocity F{A@II, = 4) + Q(_0). We conclude that the structure of the cdf equation for N = 1

and N > 1 is fundamentally different and methods developed for N = 1 cannot be expected

to carry over to N > 1 without major modifications.

Pdf equation in terms of conditional fluxes.

The transport equation for the cdf can be used to obtain the equation for the pdf fx by

differentiation according to

_XF x

Ova.-.0+ x
fN =

It follows that the pdf is governed by

Of N
Ot

N 'Of N

,=, Og2>
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N

Z{F_'7_i[(/_'(i)_)I(I)(£--(I)) = _1 .. ")fN] + b'_,_[(/_(_)l'c,[6ta(J'(1)) ----- ¢_)I ...).f:\.]}
i=1

+ (b-7_[Q(_',"')/_] _ [(o.(,)

which is formally of local (non-integral) character in scalar-velocity space. It reduces for a

single scalar in homogeneous turbulence to the well known equation

0--7+ {[F(A¢I¢ = _) +Q(v)]f} =0 (3.20)

which can be regarded as the condition that the divergence of a flux in the phase space

spanned by time and the scalar space is zero. Equation (3.20) and its generalisation to higher

dimensions (3.19) can be regarded as balance equations for the "mass" per unit "volume"

fN. The coefficients of fN can be interpreted as velocity components and fN will remain

non.negative and its integral unity.

4.0 Mapping method for the one-dimensional case.

The mapping method suggested by Chen et al. (1989) has two distinct advantages over the

previously constructed models. It produces the Gaussian pdf as asymptotic limit for decaying

turbulence and agrees very well with DNS results for pure mixing in homogeneous turbulence.

The derivation of the mapping equation will be reviewed and its variant for the characteristic

function will be discussed.
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4.1 The Chen-Kraichnan method.

The starting point for the Chen-Kraichnan method is the pdf equation for a single scalar

(I)(x, t) given by

_ + (v_,)O--_. + (Qf)- Ox((V'j(_(x_,t)=p)f)- ((FAOiO = ,_)f)
(4.1)

which reduces for homogeneous turbulence to

Of (9

--_--+ _---_{ F,, f } =0
(4.2)

The equation for the corresponding cdf is according to ch.3.

OF OF

-_ + F_-_ = O
(4.3)

The velocity in scalar space is defined by

F_ =_ Q + (rzxolO(m,t) -- _) (4.4)

It governs the dynamics of pdf and cdf. The probabilistic argument space of pdf and cdf

is the range of values the scalar _ can assume at any point (x_.,t). Let this space be the

unit interval [0, 1]. There are two slightly different ways for the development of a mapping

method.

Method I.: A mapping X : R 1 _ [0, 1] is defined by two conditions. First, the value of

the cdf at the image variable X(r/) is equal to the value of the standard Gaussian cdf at the

argument variable q

F(X(rl, x__,t)) = Fa(q) (4.5)

and second, the mapping is monotonically increasing

X(rh) < X(rl2) for rh < r/2 (4.6)

Mapping the domain of definition of the single point cdf implies that the value of the scalar

O(x__,t) is the image of a variable ranging on (-oc, oc). Hence will the mapping in general

depend on the location in the flow field and on time. The first condition (4.5) implies the

existence of a Gaussian random variable • such that

Fc(rl) = Prob{q2 < rl}

holds. The argument variable is now extended to a Gaussian random field such that the

Gaussian random variable is the Gaussian field at a location _ - Y(x, t). Note that this

extension is completely arbitrary and the mapping X does not determine the relation between

the locations of the image variable q)(x, t) and the argument variable _(q_.'). The second

condition (4.6) is a direct consequence of the monotonicity of the cdfs.
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The probabilistic interpretation of the first condition (4.5) using

F(X(q,x_,t)) = Prob{O(.±,t) < X(q,x,t)}

and

is given by

FG(rl) = Prob{q2(() < q}

Prob{O(£,t) < X(q,z__,t)} = Prob{62(_) < '1}

which can be regarded as

Prob{O(£_,t) < _} = Prob{X(_2(__),£_,t) < p} (4.;)

It should be noted that the mapping thus constructed is local in the sense that any change

of the Gaussian argument field _(_) at any location _ ¢ Y(x_.,t) has no influence on the

mapping. We note that there are three fields involved in this version of the mapping method:

1) The turbulent field O(z__,t).

2) The Gaussian argument field _(_).

3) The (local)image field _(x_,t) -- X(ql(C,),£,t) where _ = t_.2"(x_,t) holds. The image

field is called surrogate field (Pope, 1991).

It follows from the fact that the mapping relates only single point statistics to Gaussian

statistics that no scale information will be determined by this version of the mapping method.

The mapping I___2"relating the locations of turbulent and argument fields is so far undetermined.

The mapping equation is now derived from the first condition (4.5) by differentiating

with respect to time. It follows that

OF OX OF
_ 0 (4.8)

_+ 0t 0_

Comparison with (4.3) andmust hold since the reference distribution is time independent.

(4.4) leads to
OX

Ot - Q+ (rAOlO(z--'t) = _') (4.9)

The closure model is completed by requiring that the conditional expectation of the turbulent

field is equal to the conditional expectation of the image of the Gaussian reference field

(surrogate field)

-_-_Q(_) + = _) (4.10)

The most important property of this mapping equation is the fact that the Gaussian

reference measure allows explicit calculation of the conditional expectations in terms of the

mapping and correlations of the Gaussian reference field. The derivatives of the image field

can be expressed in terms of the reference field as follows

0,_ 0
- ox,X(_(Y(z__, t), t)Ox.
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and thus
06 Ox &P 0t13

-- (4.11)
Ox_ O_ 0<:_ Ox

holds. If the so far undetermined relation between the locations in physical and reference

spaces I___"is restricted to a stretching transformation uniform in physical space we get

OlG
Oxa 6_m(t) (4.12)

where m is time dependent. Denoting the derivatives of the mapping with

OX OX
X' - =_X

O_ ' Ot
4.13)

we get

and for the Laplacian

o6 x' o_ oY_
ox_ oc,_ ozo

4.14)

0_6 _m2(x,,O,_ O'_ X , 02_ ) 4.15)

The conditional expectation of the Laplacain can be established explicitly in terms of the

mapping X and correlations of the Gaussian reference field if and only if the derivatives

of the mapping are completely specified by the condition O(x) = !#. This implies that the

mapping must be local, i.e. the variation of the reference field at locations (' # ( has no

influence on X(ff2(_),t). It follows then from ff2(_) = 7/ being the unique inverse ]-mage of

6(x, t) = _ that

026 ( 0v0_, 02,1, )(Ox_Ox l_(_)=_,)=m_ X"(O¢_O¢oI_(E)=,7)+X'(o¢_,O¢ I_(i_)=,_ ) (4.15)

holds. The correlations of the Gaussian reference maesure can be evaluated as follows

a_ 0_ o_ 0_

(O-'_a a(c, I@(_) = r/> = (_-_ oq¢_> (4.16)

and
02_ ( o. o.

<o¢oo_l_(E)=,>=_, (_'_> (4.17)

The variance (_p2) of the reference measure can be set to unity without restricting the gen-

erality of the result. This completes the closure of the mapping equation. The resulting

equation determining the mapping is thus given by

OX O@ O_ - ,,

= Q(_) + m_r( _X')-gZ>(x -
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This result was first obtained by Chen et al. (1989) and generalized by Pope (1991) to

several variables using the fact that the N-variate pdf can be represented as the product of

N conditional pdfs.

Method II.: A general transformation of the domain of definition of the pdf equation

(4.2) is considered. The domain of definition is the space S - ."t_x [0, T] which is the image

space of the mapping X : R l x [0, T] ---, S (T denotes the time interval considered and !P is

the range of the values of 9). The mapping is then written as

t = Xt(r/,r), _ = X,_(rl, r) (4.18)

The mapping must possess a unique inverse satisfying the same smoothness conditions as ,\

r = Xi-l(9, t), ,7 = Xg_(9, t) (4.19)

and it must have a positive Jacobian. The mapping equations are established in two steps:

First the pdf equation in the reference domain is set up and then the mapping condition that

this pdf is Gaussian is introduced. The function fr defined by

It(,7, ,-) = f(x,_(,7, _-),x,(,7, ,-)) (4.20)

is the pdf in the reference variables, but it is not pdf with respect to q since it it is not

necessarily normalized. The transport equation for fr requires the transformation of the

derivatives in (4.2) given by

0 OXg t 0 OXg 1 0
- +

Ot Ot Oft Ot Or

and

0 OXg 1 0 OXg' 0
-_= 09 Orl + 09 Or

The inverse transformation can be expressed in terms of the mapping itself (see Courant

(1968), vol.II, ch.III, sect.4) and we obtain

0- I ( OX+ 0 OX+ O) (4.21)at J Or Orl 077 Or

and

0 1( OXt 0 OXt O)Oc2- J Or OrI + 09 _ (4.22)

where J denotes the Jacobian defined by

OX,_ OXt OX+ OXt
J=--

Or Or_ 071 Or
(4.23)
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The pdf equation in the referencevariablesfollows now in the form

OX,t, Of T OX¢ Of r . OXt 0 OXt 0

Or OrI Or} Or + { _ Or Or Or} }( Fr f r ) = 0 (4.24)

where F r - F_(X¢(rl, r), Xt(rl, r)). The mapping X,t,, Xt is now in part fixed by the require-

merit that the pdf with respect to the reference variables is Gaussian

ONe fT(rl, r) = fG(rl)

071
(4.25)

or with (4.20)

where c2 = X,t,(rt, r) holds.
obtain

fG(_)
f(_, t) -

The derivatives of fr can be expressed in terms of fa and we

Of T fG [ cgX. 02X,t,] (4.26)o,7 - ( )5 + o,7--r
and

Of T fa c92X,t,

Or ; _ 20rtOr
x 07

It follows that the Gaussian cancels out of the pdf equation which can be recast as

(4.27)

+oxoo)(ox. ox.o o,,oo0,7 0,72 0,7 0,7 Or --O-;"r/+ 0,7 Or \ 0'7 ] O,70r_Or
(4.28)

If we set (compare to (4.10))

OX, = FTOXt
_rr _' -_r (4.29)

it then follows from the pdf equation that

0 (FTOXt'_ FTOXt o,lo,- (4.30)

must also be satisfied. There are now two distinct possibilities for the mapping: We can

restrict the temporal map to Xt(rl, r) = Xt(r) which then implies that OXt/Orl = 0 and the

second mapping equation (4.30) is trivially satisfied. Hence, the condition that the reference

measure is Gaussian does not determine the scale factor OXt/Or. In the second case where

the dependence of Xt on r/ is retained we find that the second mapping equation (4.30)

determines the temporal evolution of Xt but not the variation with respect to r/which is set

arbitrarily by the initial condition.
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4.2 Mapping method for the characteristic function.

The characteristic function corresponding to the pdf f(_;, t) is defined as the Fourier transform

1 fd_f(_,,v,t)exp(i_() (4.31)rF/(_,.r_t) --
J

If we regard the pdf as the image of a Gaussian via ,p = X( q, t) we can transform the integral
and obtain

m((,x_,t) - 1 dTl-_f(X(q,t),x_,t)exp(iCX(q))

It follows from the properties of the mapping X(q) that

m(q,x,t)- 1 / dnfc( )exp(i4X(v)) (4.32)

holds. If we introduce the characteristic function of the Gaussian ma(() we find that the

characteristic functions are related by

1//m(_,i,t) = _ dt 1 dwrna(_o)exp{i((X(q)- wr/)}
4.33)

and we can regard

Y((,_o,t) = v� _ drlexp{i((X(rl,t)-wrl)}

as mapping function. It is straightforward to derive the transport equation for Y from

and the equation for X given by (4.10)

4.34)

4.34)

= m2(V_ • V_){-w2Y((,_) + __=-7(wl")+
Ot

/dx/d_x_Y(4, x)Y(_,_)Y(-<,_-x-_)} +i4/dxO,(_-w)Y(<,_) 4.35}

where Q is the Fourier transform of the source term Q. This equation is apparently nonlinear

and its usefulness depends essentially of the way the limit of zero fluctuations is approached. It

follows from the definition of Y (4.34) that the Gaussian characteristic function is approached

if the mapping Y approaches the Dirac-function

Y((,w,t) --* 6(_ - w) as X(rl) --* rl

This property eliminates Y from consideration since it leads back to the awkward properties

of the time inverse diffusion equation whose solution must reduce the width of the solution

profile as time evolves. However, a simple modification of the definition of the mapping

1
Z((,rht) = _,=__exp(i((X(rl, t) _ q) (4.36)

_/ 2 rr
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leadsto the limit
1

z(<,.,t) -+ v/_, _ t -+ _c

and the corresponding transport equation appears in the form

0z=
Ot iQ(,7)iz + m2r( 0_, o,p0_ 0¢_ O2Z l(OZ) 2 OZ){ 0_ i(z N -i_z - ,7-b--_-" } (4.37

We note the absence of integral terms but the presence of nonlinear terms. The characteristic
function can be recovered from

m(t_;x,t) = / dwma(_) / drlZ(q,r/;x,t)exp(i(_ -w)rl) (4.38)

In conclusion we note that there is considerable freedom in setting up a mapping procedure.

The usefulness depends on two aspects: The approach of zero fluctuations and the number

of independent variables, which becomes critical if more than a single probabilistic variable

in the pdf is considered.

5.0 Mapping method for the multi-dimensional pdfs.

The extension of mapping methods to multi-dimensional pdfs requires some preparations.

We begin with a fundamental property of the pdf equation and its consequence for mapping

methods. The pdf equation is regarded as a first order pde and a slight modification of the

characteristic theory of this class of equations (see Courant and Hilbert, vol.II (1962), ch.II)

leads to the basic result. It will be shown that it is not necessary to resort to the cdf equation

(as done by Pope, 1991) for the development of mapping methods.
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5.1 Fundamental mapping equations.

Suppose the pelf fM(_:,"" ,_M,t) = Prob{_i __ _i __ _, + d_i, i = I(1)M} depends on 31

probabilistic variables, i.e. fM integrates to unity with respect to _1,' "", _M, and time. The

transport equation for fM is then given by

Of M M0----_ + E [(R, Iq_, = _1, • • -)fM] = 0 (5.1)
i=l

where the fluxes Ri are subject to the conditions that random variables q_i assume the values

c2i for i = 1(1)M. The particular structure of the conditional expectations {Ril'" ") is not

important for the following assertion. Consider now a local mapping X : R M --* _M where

_M denotes the range of the variables 'I_i for i = 1( 1 )M,

_i=Xi(ri1,''',r/M,t), i=l(1)M

such that the Jacobian J defined by

(OXi)J - det\-_--_j > 0 (5.2)

remains positive. Let fa(ri1,"', riM) be M-variate Gaussian and let

f a( ri_ , " " , riM ) (5.3)
f;/(Xl(ri1,"" ,r/M ,t),''',xM(rIl,''',r/M ,t),t) : J(ri1,'",riM,t)

be the pdf defined by fa and the Jacobian J. We will prove that f_4 satisfies the transport

equation

ot ),:+_ _ -:- .,<)=
0 (5.4)

i----1

where _i = Xi(q:,"', riM,t).

Proof: The time rate of change of f_/ for 7? kept constant follows at once from implicit
differentiation

(o-2): (o-2)+
where _0i = Xi(ri1,..., riM, t) was used. Differentiation of the right hand side of (5.3) leads to

0 ,°:-:(7)
Using (5.3) we get

( )0 fa =--fM .lOt]NT,
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The time rate of changeof the Jacobian is given as a sum of determinants by

k=l

where the notation

00x 0Or Or/1

°

00M 00M ,grim

was used for the time derivative.

where the arguments are functions Xi(rh," ..

0
I

Consider now a differentiable function F(XI,...,XM)

, riM, t) and set up

OF "_ OF OXk

o_--S,= _-" oxk o,1_
k=l

Cramer's rule leads to an expression for the derivatives with respect to the Xi

o._N.x ... __oF ...
0Or 0Or Or_t

... OF ... OfiM
00M OqM OqM

where the derivatives of F appear in the ith column. Setting F -- -'_'i and summing over

i = 1(1)M produces

M OX, M

=Z
= k=l

,9_t Oqt Orb

°

o.x_Sa. . . . _ ... o._.Xu.
OqM OqM O_?M

which is identical with the time rate of change of the Jacobian. It follows that

holds. Combining the results for the left and the right hand sides and using

qZi = Xi(r/1," • ",riM,t)

leads to the conclusion that f_, as defined by (5.3), satisfies

M . M f* OXi
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or

as claimed.

Note that the particular properties of the Gaussian reference measure did not enter the

proof, only its time independence was used. It follows that any other time independent

reference measures such as the measure with beta-function density, suitable for bounded

scalars, could be used. Comparison of (5.4) with (5.1) shows that tiffs result allows tile set

up of the mapping equations for any number of variables. It follows that fM = f,_t holds if

OXi (Ri[_l 41, ") i=l(1)M
Ot

(5.5)

and the initial and boundary conditions for (5.1) and (5.4) are the same. The relations

(5.5) are the central result for mapping methods. It is instructive to compare (5.5) with the

dynamic equations for the scalars _i(x., t). The scalars are governed by

0Oi(z.,t) = Ri(x, rbl(X__,t) ... rbM(Z__,t),t)
O_ ' '

for i = I(1)M and the right hand sides Ri do not depend on the parameters _l,'",_SM.

Note that the dynamic equations may be taken at different points in the flow field and the

location vectors £ are then labelled accordingly. The mapping equations (5.5) contain the

conditional expectation of the same right hand sides Ri but the expectations depend on the

conditioning parameters 41,'",_'M. The dependence on the location is now parametric if

all scalars are taken at the same point.

The generalisation of (5.3) to time dependent reference measures

fG(ri1, " " " , riM, t)

f;t( Xi( ril " " " ' r#M' t)" " " 'XM(ril' " " " ' r#M' t )' t ) = 7('_l:-" " , _M,'tS
(5.3')

leads to a modified equation for f_. The dependence of the reference measure on time is

established for the ease of a non-degenerate M-variate Gaussian given by

f_(ri,,

M M
1

• ..,riM;t ) = {(2r)Mdet(Mij)} -_ exp{-_ Z Z (rIi -
i=1 1=1

pi(t))Mi_a(rij - pj(t))}

in terms of the time dependence of its mean value vector p_(t) and covariance matrix MU(t).

The equation for the pdf defined by (5.3') can be shown to be

(0___) M O /OXi .\ Olog(fG)
i=1

(5.4')
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The derivative for the logarithm of the referencedensity fa can be established if the particular

form of fa is known. It follows for the Gaussian that

01og(fa) M
0t -- E 0 log( fc ) 0_ i

i=1 0#i Ot

.vt M 0 log(fG ) O,'tl_ 1

i=1 =

holds. It follows from the pdf equation (5.1) that a time dependent reference measure is

inappropriate if the right hand side of the pdf equation is zero.

The properties of the flux equations (5.5) depend essentially on the formulation of the

basic laws. Their particular structure will be analyzed in the following sections for the spatial

and material frames. The case of two-point pdfs will then receive special attention to illustrate

the properties of mapping methods that are able to produce scale information.

5.2 Mapping method in the spatial frame.

The evaluation of the conditional expectations requires now the knowledge of the the partic-

ular properties of the fluxes Ri. The random variables q_i are now regarded as the the values

of stochastic fields at one or more than one points x (i) in the flow field D. At each point

x(i),i = I(1)N in D a set of K variables Oj,j = I(1)K consisting of velocity, scalars and

other variables is taken as the probabilistic variables in the pdf. The notation is modified
(i)

Oj -- _j(x__ (i), t) to indicate the location in the flow field. Accordingly axe the fluxes and the

(i) (it R(.i)components of the mapping denoted by Rj , X i The fluxes __j can be split into a local

and integral contribution

• 0_,
..) + NJi)(q_k, _, • • •) (5.6)R(.i) = r(i)t_(i)

j "-'j _t ' -Ox_(i)' Ox_

where the lack of a superscript in the integral contribution indicates that it depends on any
(i)

location in the flow field. It should be noted that the presence of spatial derivatives in the Rj

required the extension to stochastic fields. Examples for the local and integral contributions

can be found by inspection of the basic laws (3.1) to (3.3) and (3.8). It is easy to see that

02Oj(i)
L i =u

Oz ')Ox

is local and

=
,t ox jD

is integral and, therefore, nonlocal. The Gaussian random variables representing the argu-

ments of the mapping are also regarded as the values of stochastic fileds at N locations __(i)

i = 1(1)N in the domain of definition R a of the fields Oj, j = 1(1)K. The argument fields

• j(__), j = 1(1)K axe homogeneous Gaussian fields with time independent statistical prop-
erties. The extension of the random variables to stochastic fields taken at N points in the
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respective domains of definition implies that there must be a relation of these N points in

R a for the Gaussian argument fields to the corresponding N points in the flow domain D for

the image fields. This mapping __Y: [D]N __, [R3]N is denoted by

((i) = t_-(,)(._r(,)....r_(x), t) (5.7)

It is time dependent and was defined as pure stretching in the case of single point pdfs (see

(4.12)). It is important to notice that !2 is not determined at this point and the subsequent

development will show that ]1_"may depend on the mapping Xj

The fundamental requirement of mapping methods is now that the conditional expec-
(i)

rations of the turbulent fields (I)j (x(i),t) is equal to the expectations of the images of the

Gaussian argument fields qJi(__(J)), i = 1(1)K, j = 1(1)N. If we denote the fluxes taken at

the image fields with/_(i)
--2

_(i) (i)[v-(1)/ff_(1) ,...),__ ,.. ,__ ,t) (5.8)Rj = Rj i,._. 1 I.-_ 1 ,'''),'",.¥(N)(tI/(ll) x(1) " x(N)

and

(I_j^(i)- X_i)(kiJ(ll)(y(1)(.r(1 )_ ,...,x (N)_ ,t)),-.. , kI)_?)(Y(N)(x_. (1),''" ,_x(N),t)), J:(1)-

for i = I(1)N, j = I(1)K, we can write the mapping closure as

where the fact that the mapping has a positive Jacobian was used to express the conditions

on the image variables in terms of the argument variables. The equations

OX_ i) .. _(L) (_)
(r/(1'),...,r/_. _),,._.r(1), . x(N),t)=(Rj_ 1_i =r/(ll),...), j= I(1)A', i= 1(1)N

Ot (5.11)

(with appropriate change of notation compared to (5.5)) are called flux equations. Introducing

the the representation (5.6) for the fluxes leads to

The presence of nonlocal contributions NJ i) needs some attention, because they contain the

values of the turbulent fields at locations _g ¢- x (i) for all i = I(1)N, where they are not

image of a Gaussian argument field since the mapping (being local i.e. only defined for the

x_(i), i = 1(1)N) is not defined. Extending the mapping to nonlocal (or functional) character

does not make sense since no tractable mapping equation would emerge. The only avenue

open on the level of N-point pdfs is the construction of an additional closure for the nonlocal
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terms (such a closure wasoutlined by Chen et al. (1989)). This aspectof mapping methods
will not be discussedin the presentchapter.

It is important to notice that the pdf f,_t defined by (5.3) is not solution of the pdf

transport equation (3.19) for N > 1 or non-homogeneous turbulence if the mapping Xj
(z)

is only applied to the probabilistic variables _i . This is a consequence of the fact that

the locations ,_r(i) in the spatial frame are parameters and not probabilistic variables since

there is no transport equation governing them. However, it is clear from the structure of

the convective term in (3.19) that the notion of the mapping can be extended to include

z_: [R3]N _ [O] N which is determined by

OZ_ i)
(5.13)

for j = 1,2,3 and i = I(1)N, where the supscripts of X"!il..j are arranged such that j = 1,2,3

correpond to the velocity vector. The closure is completed by requiring that Z is the inverse

map of I¢_.2"introduced in (5.7)

(i) _}
Zj = I¢ (5.14)

It is now apparent that we must require that tZ["• [D]N --, [Ra] N has a unique inverse. It

follows then that the mapping I..2"for the domains of definition is in general a function of the

same set of independent varaiables as the mapping X of the range of values.

5.3 Mapping method in the material frame.

The basic laws in the material frame can be given in mixed (spatial-material) notation as

follows
0
_Xo(a_,t) = t;,(_,t) (5.15)
(.It-

as kinematic condition and

0_% _ o (5.16)
OX_

- 021/% (5.17)OVa 10P + v
Ot p OXo OX_OX_

0¢ 02_

= O(O) + FOXzOX _ (5.18)-N-

where X(a, t), V(a,t), P(a,t) and ¢(a, t) denote now position, velocity, pressure and scalar

in the material frame as function of the label variable a --_ X(a, 0) and time t. The time

derivative is now the substantial derivative with the label a kept fixed. It was shown in

section 1.1 that the implicit derivatives with respect to the actual location can be expressed

in terms of derivatives with respect to the independent variable a, but the resulting expressions

are highly nonlinear and will be invoked only if necessary. The set of dependent variables
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consists now of position X, velocity V and scalar • and the mapping equations developed in

section 5.1 can be applied without modifications. It is worth noting that the minimal set of

dependent variables appearing in the spatial frame (section 5.2) requires an extension of the

mapping and results in the same set of variables for the mapping as in the material fi'ame. The

(i) (not to be confused with location X in the material frame)components of the mapping Xj
-(_)

are ordered such that X 3 corresponds to location for j = 1, 2, 3, to velocity for j = 4.5, 6

and to the scalar for j = 7 and the superscript indicates the material point a (0 E D(0). The

flow domain D(t) is a function of time and represents the range of the dependent variable

position X whereas D(0) is the domain of definition of all dependent variables X, L" and (I,.

The random variables (I'i appearing in the pdf equation (5.1) are now regarded as the

the values of stochastic fields at one or more than one labels a_(t) E D(0). At each label

_a(0,i = 1(1)N in D(0) a set of K variables 'hi, j = 1(1)K consisting of position X, velocity

_V and the scalar (I) is taken as the set of probabilistic variables in the pdf. The notation is

Is) (I)j(a_ (i), t) to indicate the location in the initial flow field.modified as in section 5.2 to (I)j _=
(i) (i)

The fluxes and the components of the mapping are denoted by Rj , X i as before. The
(i)

fluxes Rj can be split into a local and integral contribution

(,) (i) (i) O{(k _) (i) O{k

Rj = St +,vj ox ,)
(5.19)

where the lack of a superscript in the integral contribution indicates that it depends on any

location in the flow field ( mixed spatial-material notation is used for the fluxes). The Gaussian

random variables representing the arguments of the mapping are also regarded as the values

of stochastic fields at time t and at N labels q-I,) i = I(1)N in the domain of definition R a

of the fields _j, j = I(1)K. The argument fields _j(_,t), j - I(1)K are homogeneous and

stationary Gaussian fields. The mapping _ introduced in the spatial frame by (5.7) appears

naturally in the material frame. Recalling that the mapping .¥ji) represents for j -- 1.2.3

the position of the material point (i)

Xj(a_ (i) t): Y(')tffs(1) ..- ff_(-N)'a(1) "- a (N) t)
.Lj X=l _ , ,-- , ,-- '

we note that at time t = 0

. ) .,a (N) 0) = (5.20)j _,Zl ,'" , ;a (1 ,.. ,

(i)
must hold. The condition of a positive Jacobian for the mapping X 1 implies that there

exists a unique inverse which is for j = 1, 2, 3 the Gaussian distributed argument position

field at _'(i)

ff_j(_(i)) _- {xJi)}-l(_9(ll,,. . . , ;{hN); a(1),. . . ,a_(N),t )

(j=1,2,3). Fort=0weset

. o) (5.21)
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and (5.20) implies that {XJ')}-l( ... , 0) depends only on the label a_(i)

a mapping

.(i) a(i))j = tJ')(

defined by

Hence, we have found

(5.22)

, (N)'a(1), • ,a_( O) (5.23)_j(i)((/(i)) _ {XJi)}-l(_(ll) "'" ,_/x ,- "" N),

which is independent of time. In summary we note that all argument fields are stationary and

homogeneous Gaussian fields. The deterministic conditions (5.20) and (5.21) at time zero are

enforced as initial conditions for the mapping X_ i) which approaches appropriate constants

for t _ 0, thus producing marginal Dirac pdfs for position. There is no need to introduce

time dependent reference measures.

The fundamental requirement of mapping methods is now that the conditional expec-

tations of the turbulent fields _i)(a__ (i), t) is equal to the expectations of the images of the

Gaussian argument fields _i((_.(J)), i = 1(1)K, j = 1(1)N. If we denote the fluxes taken at

the image (surrogate) fields with/_i)

R(i) ._ R(i)(y(1)t.fft(1) ," _ ...,a(N),J ._ ,.., ,__ ,...),...,x¢,7)(_(, ') ..),a('), _ t) (5.2_)

and

^(,) (z) (1) (1)(a(1) , (_.')(x(N)(a(N))),a(])_,j =x_ (q_l (Y - )), q_

for i = I(1)N, j = I(1)K, we can write the mapping closure as

,...,a_(N),t) (5.25)

(1) ^(i) (1) (1)
(R_i)l_')=41 ,'"} = (Rj 1_1 =q, ,"') (5.26)

where the fact that the mapping has a positive Jacobian was used to express the conditions

on the image variables in terms of the argument variables. The equations

OX_ i) , (1) (N) g(1) . a(N),t)= {/]t_i)l_(ll)=r/] 1) ..), j = I(1)K, i = I(1)N
O_ (r]l ,'" ",0K '-- ,'" '-- '"

(5.27)

axe called flux equations as in section 5.2. Introducing the the representation (5.6) for the

fluxes leads to

OX_ i)
(1) (1),= 1)= ..-)+ = ') (5.28)

The presence of nonlocal contributions _v(i) presents the same difficulty as in the spatial
-'j

frame since they contain the values of the turbulent fields at labels g ¢ a (i) for al 1 i = 1( 1 )N.
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5.4 Mapping method for two-point pdfs.

The mapping methods developed in the previous sections will be applied to a special case of

particular importance. We consider the pdf taken at two points in homogeneous turbulence

and restrict attention to position and velocity desribed in the material frame. The pdf

equation (3.19) appears now in the form

iOf2 2_A- Zaf2 +_--_V_ax_)z.-, {[(vA(i)v_[O('r('))=O"'"/-( [0(Z(1))=Oi,-..)]f,,} =0
O_t i=I i=l

(5.29)

where the subscript indicates that two points are considered. Homogeneity in physical space
1 0(2) ))implies that f2 depends on v__- z_.(2) - z__(1) but not on z_. - _(_ + z_.(1 and it follows that

the pdf equation is reduced to

Of_.j.2 v2 1 Of 2 2 (9.
O_ "31-( a'--t'ct)_'-_r_ "3t'Z OU t {[(V/_(')t'_IO(x(1))--- 01'''')--(--_/)10(27(1))

i=1 G_X_

=01,''')]f2} =0

(5.30)

The pdf f2 depends on relative position r, velocity at two points v_(i), i = 1, 2 and time t.

The image space S of the mapping XJ i) is, therefore, spanned by the range of these variables.

Since no boundaries are present for homogeneous flows it follows that the image space is given

by S = R 9. The argument variables are all Gaussian random variables and this implies that
(i) -(i) R0 Rg.

the domain of definition of the mapping Xj is also given by R 9. Hence, X) : ---*

We denote the mapping of the relative position with Z : R 9 ---* R 3 and the mapping onto the

velocity space with ._.y(i) : R 9 .._, R 3, i = 1,2. The image variables are now regarded as values

of stochastic fields at two labels a {i}, i = 1,2.

01(it = { Xj(a(2),t)Vj(a(i),t),_ Xj(a_(l),t) - AXa(a_(1),a (2), t) i=1,2

and likewise for the argument variables

(,) J"
i=1,2

(5.31)

The mappings relate the argument and image variables

"a (1) t) =Z(/k___,_2 (1) _(2);a(1) a(2), tZ X(_ ,a_(27, ,_ _ ,_ )

and

V_.(a(O, t) = =_y(O(Aff2, __.(1), ___(2); a(1) a(2),t) (5.32)

where the label a_ in physical space and the domain of definition of the argument fields are

related by the time independent mapping Y given by (5.22). The flux equations follow at

once from section 5.3 in the form

OZj .(2) -(1)
- xj j = 1,2,3 (5.33)
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and

0"%J') _ 2_/'j(i)IA _ 1 ...>, i 1') (5.34)
Ot -- <£ i)l/_kI/1 = r/i,'" ") -_- ( = Y/i, = ,-

The implicit form of the local and nonlocal parts of the conditional fluxes follow from (5.17)

a_

,__(?_(')IZX_x= _x, ...) = (VOZ_OZ_ [/x_l = _x,...) /5.35)

and

1 0 /5IX ( t), V(., t)]lAqj I =r/l,...} (3.36)=r/l,...)= -' -
where the pressure is a functional of position and velocity according to (3.8) which can

be translated into the material frame without difficulty. However, position and velocity in

P[X__(., t),V(., t)] cannot be expressed in terms of any argument fields because the mapping

is defined for two labels only.

The evaluation of the local part of the flux equation is rather complicated and will be

outlined without explicit calculation of all expressions. Furthermore, it will be assumed that

the mappings do not depend parametrically on the labels a_(i), i = 1,2 and the dependence on

the labels is via the map Y__only (the maps Z ans X (i) are autonomous with respect to label).

The position field is dependent variable and the mapping is defined for two different labels.

This implies that the implicit derivatives with respect to actual position must be expressed

in terms of derivatives in terms of labels. The Laplacian is thus according to section 1.1 given

by

02x(2 ) 1 OZ_ Oz, 00Z_ OZ_ Ox(2 ) )
OZ3OZ_ - 2 e°_'te6'_'_"_a_ Oa,_ Oa6 ( Oao Oa._ Oao

(5.37)

The argument fields /_ and _('),i = 1,2 depend on the label a_ via the map Y(a) and

parametrically as indicated in (5.31) and (5.32). It is now more convenient to expand (5.37)

into

o_x(2)

OZ_OZ_

1 OZ_: OZe_ OZc, OZo 02X (i)

= _eoa-_e_,,o Oa,i Oa,, Oa a Oa. r OaoOa_

Implicit differentiation leads to

OZ_ OZ_, OZ¢ OX(2 ) __

-- + eo_e6,1,o Oa,7 0a,o Oa_ Oao

02 Z¢

Oa_Oa_

(5.38)

oz. oz. oY, or, ozo
Oa--"_= 0¢26 Oi.v Oa_ + 0_ _) 0_ t Oat_ + Ocp__) 0_._ Oaz (5.39)

where Z(_,__(_),_(2),t). The mappings Z and X (i) were assumed to be local. This implies

that the derivativ-es OZc,/Oqo_... as well as O_/Oa_ (since it is the inverse of Z at time

zero) are completely determined by the conditions /_ = 7/... and the conditional expec-

tation applies to the derivatives of the Gaussian argument fields A__... only. The second

derivatives follow from repeated application of (5.39). The conditional expectation of the

Laplacian emerges as complicated combination of products of first and second derivatives of

the mappings _Z and X (i). The degree of nonlinearity is clearly given by the nonlinearity of

the momentum balance (1.5).
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6.0 Conclusions.

Severalconclusionscan be drawn from the mapping methods discussed in the present paper.

1. Mapping methods applied to velocity pdfs require additional closure assumptions

since the pressure depends in functional (integral) form on velocity.

2. Random variables which are regarded as values of stochastic fields at particular

locations require an additional mapping for these locations in the domains of definition of

image (turbulent) and argument (Gaussian) fields.

3. The computational effort for the flux equations is approximately M-times the effort

for the pdf equation where 3'/" is the number of probabilistic variables of the pdf..Mapping

methods are, therefore, not competitive for M > 1.
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1.0 Introduction.

The prediction of compressibleturbulent reacting flows requires careful consideration of all
possibleformulations of the basiclaws to produce a set of equationssuitable for pdf methods.
The first step is, therefore, devoted to the study of possible formulations of the pdf method
for compressibleturbulent flows with combustion reactions. This aspectof the researchwork
wascarried out in a previousgrant and is documentedin the report by Farshchiet al. (1991).
The secondstep is the developmentof closure models for this type of flow with particular
emphasison the effect of compressibility. The pdf method can be based on the transport
equation for the pdf of thermo-chemical scalarsplus variables measuring the rate of relative
volume expansionor the material derivative of the pressure(seeFarshchi et al., 1991). The
pdf approach offers the possibility of treating chemical non-equilibrium in rigorous fashion,
which is particularly important for high speedflows characterizedby high shearingrates and
short residencetimes. The progressachieved in the development of a closure model for the
pdf equation valid in this situation and the successfulapplication of this model to supersonic
hydrogenflameswill be discussedin detail.

2.0 Pdf transport equation for compressible flows.

The single point pelf equation for scalar variables determining the local thermodynamic state

is considered. Turbulent flow at supersonic speed can be modified significantly by compress-

ibility and the interaction with shocks created outside the turbulent flow field and random

shocks (shocklets, Johnson et al., 1973) generated in supersonic turbulent shear layers. Pdf

methods can be adapted to cope with the effects of compressibility including random dis-

continuities and combustion. We consider the case of infinitely fast reactions, in which three

variables determine the local state: Mixture fraction, pressure and enthalpy or any other

equivalent set of thermodynamic variables. Pressure can vary significantly in supersonic

flows and enthalpy is not conserved due to frictional heating in high shear regions. Hence. no

further simplification, as in the case of low Mach number subsonic flames, is possible. The

single point pdf fl is then set up for the velocity _, density p, or a local function of density

such as log(p) which will be used below, internal energy u, relative rate of volume expansion

D and mixture fraction ( (a choice that was found to be advatageous by Farshchi et al., 1991)

fl(_,d,u, (_, r/;_,t) =---(6(v- t_.,)6(p - d)6(e- u)6(D - _)6(_ - rl)) (1)

The transport equation for this pdf can be obtained using standard methods and emerges in

the form

0 01) ^ 1 (Oroof) + Bd(f_f)}+<,o =)- s>+

0 2 0 7- ldu(f I + "t('_ - 1) M°2 3_"lOq_}_}
+_--_(d (_fl)- _uu { Cv -'R"ff(of)- Pe '0.r_"

0 1. 0 (lOr_)f)_(Ov_Ot, of)+B(_]) c9 l_Pxa 0 0 _ O(; ox oxo )})
(2)

2



Mean thermodynamic properties follow from tile pdf fl by integration using the local relation

determined by equilibrium considerations. The mean pressure for instance is given by

(p)= f ddid_ f (hlp(d.u._l)f_(d.,._l)

where p(d, u, 'l) denotes the local relation of pressure to density, internal energy and mixture

fraction. The calculation of this type of local relation is straightforward. The relations fl>r

other thermodynamic variables such as composition and temperature to the pdf variables

density, internal energy and mixture fraction were established using the equilibrium code

STANJAN (Reynolds, 1986).

2.2 Closure model for the pdf equation.

The pelf equation to l)e considered is the result of integration of (2) over velocity space. It is

given in terms of the density-weighted pdf ./_1 defined by (Kollmann, 1990)

fl _ P(_l,''','ffl),fl(,i._l, "'" rZ/;.r,t ) (3)

<p)

where _ corresponds to the scalar variables (p, e. D, (,) and I = 4. The integrated pdf transport

equation for the set of I thermo-ehemical variables follows from (2) for high Reynolds nunfl)ers

in the form

Of, 0[, _s°_(<i>.f)}3( dC,il )I + -_u{-<p>_u(_ i, + "_'(_ - I )-_-_e

c) c3t,_ onv3 /$ _ 0 I _ 0+N{-<o._,,ox ..,+B( . /)-(_x (-_ .. )/)}- ox (<p)<,,21%=_J).},)

o -y <o_o} )_ o , o l O,-o,_ o o,,o_ o_0.,, Pe . 0(; Re<Tr_ ( p 0.,-., ).}) _ ___,7<. (prO---]-£.)j) (4)

The terms on the right hand side can be shown to contain dominant terms describing turl)ulent

mixing in scalar space which has the weU known structure of a time-inverse diffusion process

: - E E
mix j-=2 k=2

(<+jkl%= _j)]l) (5)

and the scalar dissipation rates eij in the conditional expectations are defined by

O_ O_ (6)
0.For 0,rot

with equal diffusivities Fi = Fj = F for simplicity. Note that no such term acts in the first

scalar direction which corresponds to the variation of density.



2.3 Mixing Model.

Any closuremodel for the mixing processdescribedby (,5)should shareasmany propertiesas
possiblewith the exact term. It should preserven()rnialisati(>nand mean valuesand de('rea,_e
variancesand covariances. The pdf should remain nonnegative and should not spread outside

the domain of realizable states. The pair interaction model for the 1 - 1 (note that one (,f the

scalars does not nlix as it corresponds to the density, which does not diffuse) scalar variables

is defined by

Tt- ,,,= r { d£ d,;".f,(_;').fl(£')r(¢',#".Q)-/1(_)}
(T)

It is assumed that all scalars are appropriately normalized such that the scalar space (set (_f

all realizable states) _17is a subset of an l- 1-dinlensional unit cube. It should 1)e noted that :t_

may have intricate boundaries as a consequence of realizability conditions that mass fracti(nls

cannot become negative or exceed unity and that they must add to unity. The transition pdf

T(_', _", _) must satis_" the requirements

_- . ^If I _)IIT(_'.¢".¢) T(,d' _ ,; +_ -f) (8)

and

T(,,',,,".,,) = 0 ,: ¢ X(,s',;") to)

The central part of the condition (9) is the construction of the neighbourhood .Y( ,:'. ;")

which is the interval [4',_"] in the single scalar case. N can be at most the cube C'l-1 =

{_ : _, E [9_, ,r,j,""l i = 9,_l} defined by _' and _'?" for pairwise interaction according_ to our

assumption of normalisation of the scalars. Realizability requires that the nfixed states are

in _, hence

.\; C Ct-1 N :17 (10)

must hold. Symmetry

fen ¢* Z+£'-R6N (II)

must be imposed to insure the properties of a nfixing model. Furthermore is T l)df with

respect to

dgT(9'._". )=1 (12)

Conditions (8)-(12) do not define the mixing model uniquely but represent a class of models.

It is important to realize that the structure of the scalar domain R modifies the neighbourho(M

N unless N is reduced to the line connecting _' and £'. If_ _ and £' are close to the boundary

of _ the neighbourhood is essentially the connecting line clue to (10), but if the p(fi' are

inside _ and far away from its boundary then may N be the cube Ct-1. The transit, pdf

T determines the particular form of the mixing model and is set up in the present case as

T(_',_"._s) = G(C.)H(_',.¢",_) 13)



where

1 for _sE .V(9',,/')m - l (N)H(_', p". p ) =
0 otherwise

(141

and #l-l(X) is the I - 1-dimensional volmne of X( _:'. ,:") and ( denotes tile centered variable

2 1 , -")] i o I /15)(,- [,_,-7_(¢,+,-, • =-.
l,l_l(.\')r°'--_

It follows that T satisfies

and

\d(G(() = "2l-I
(16)

G(() = G(-() (17)

The present choice for the function G(() is a constant determined by the condition (16) which

can be regarded as the condition to assign equal probat)ility to all possible outcomes of the

mixing interaction of two fluid elements. The mixing model for (5) is thus set up.

2.4 Compressibility Effects.

It is advantageous to set up the closure moclel representing the effects of compressibility

in the Lagrangean frame as stochastic differential equations. The basic laws are written in

abbreviated form

dlogp _ -D (18)
dt

for mass balance
dD
-- =QD (19)
dt

for the balance equation for the relative rate of volume expansion

dE
-- = Os (20)
dt

for the energy equation in terms of the internal energy per unit mass and finally

d( Q< (21)
dt

for the mixture fraction, where d/dt denotes the material derivative and D =- V- t_,the relative

rate of volume expmlsion. The right hand side terms are conveniently set up in the Eulerian

frame (which can be considered implicit Lagrangean expressions). The basic laws combined

with the constitutive relations for Newtonian fluids lead to the explicit form of the Q, given

by

1 0 10roa 2_( 10p 0t'_ Ova Oq_,
QD - Re Ox_ ( ) ) + -- (22)



where qc, denotes the energy flux vector,

i ,_ ? 0%

Q e - -?( ? - 1 ),iI_( 1 + p)D + -if[e?( ;, - 1 ).112,0 - RePr 0.c_
23)

and where ,I, is the dissipation function.

I 0 &,"

Re Sc O.ro (OF 0.--_ )
24 :_

The general form of the closure model (24) fi)r the pdf equation given above (4) (which c(_n-

tains the dynamics of the variables density, internal energy, relative rate of volume expansi(,n

and mixture fraction) is set up using the form of stochastic differential equation

d Yi = Aidt + biadIVj + dJi (23)

The stochastic nature of (25) is given by dlV,, which is the increment of a normalized randoni

process (such as the Wiener process), and dJi, which is the increment corresponding to a

jump process. The closure for the equations (19) - (21) will discussed for each of them in

some detail.

I. The time rate of change of the relative rate of volume expansion consists of three

contributions: The increment due molecular transport which is regarded as mixing, the in-

crement due to the passage of isentropic coinpression and expansion waves past the material

point considered, mid the passage of random shock waves past the material point considered.

The first contribution ADmi_ is represented by the mixing model (7) together with

the requirement that T is constant in its domain of definition. It can be shown that the

viscous term in (22) implies indeed that D is subject to diffusion. Hence will D participate

in the mixing model described in the previous chapter. The second contribution is nlodelled

according to an Ornstein-Uhlenbeck process

AD,, = {cp, f(M_)AtI_q-c,2f(M_)At(D- {D))
7- 7-

(26)

where Cpl = 1.0 and co2 = 0.5 are constants (the values given here are arbitrarily chosen and

a systematic variation is discussed in a later section) and

I(M.) =

is an empirical flmction of the local Mach-number. It ensures that the increment of D vanishes

as the Math-number goes to zero. The first part of AD is a Wiener process (71 is a Gaussian

random variable with zero mean and unit variance) representing the random stirring effect of

isentropic compression and expansion waves moving past the material point considered. The

second part is a drift term ensuring the existence of a steady state. Finally, we note that r is
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the turbulent time scaleprovided by the secondorder closure (seeDibble et al.. 1986). The
model for Q o has now the form

QDAt'--&D,,,, + AD,., + &D.,h (27)

where the first and the second contributions have been established. The last term represents

the random occurrence of shocks. This contribution is nearly singular and corresponds to the

derivative of a Dirac-pseudofunction in the inviscid limit. There is no model for it at present

and a way of treating random shocks will be discussed in the section II below.

II. Mass balance (18) does not require chJsure and contains only a drift term

dlogp = -D dt (28)

as long as the relative rate of volume expansion remains sufficiently smooth. The case of

random shocks leads to a singularity for D and will be treated as separate contribution to

dlog(p)/dt in the form of a jump process. If the local Machmumber is greater than unity.

shocks may appear with the maximal strength given by the normal shock relation

M_ - l
G(3I_) = l+:-_-M_ for M_ _> 1

0 otherwise.

(29)

and the increment d J1 for the jump process representing the random shocks is modelled 1)v

, dt

d J1 = G( ,lI_ ) _:\ _( --r )q
(3O)

where N,(¢) denotes a nonegative integer random variable representing the number of shocks

arriving at the material point in ¢ dimensionless time units and 0 _< q _< 1 is the random

variable giving the dimensionless shock strength. The current model for N.,(o) is a Poisson

process and r/ is a random variable with uniform distribution. The complete increment for

the logarithm of density is thus given by

A log p:- - DAt + d J1 + ADdi, (31)

where the last contribution is due to frictional heating at constant pressure. This contribution

is given by

z-_Ddi, = p((,, u + z__u,p) -- p(q, u,p)

where Au is the increment of internal energy due to frictional heating. Finally, we note that

log p does not participate in the mixing process.

III. The increment for the internal energy consists of several contributions

QEAt-_Aum,, + Au,, + {-_t(-t - 1)312( 1 + p)D + -_e'_(_ - 1 )AlgO}At + A_,,_
(32)



The first part is due to heat conduction and is therefore part of the nfixing model applied
to internal energy. The secondpart of the increnient is due to the isentropic exl)ansi_,nand
compressionwavespassing the point consideredand can t)e written as

At,,, = u((..,, p + __X/))- _,(<.._, p)

where ,._Xp = -DAt denotes the change of density as a result of tile change in the relative

rate of volume expansion. The third part c(mtains the pressure work term and the fricti_)nal

heating contribution. The dissipation function consists of

for flows of boundary layer type. The last contribution is due to the random arrival of shc_cks

at the material point considered.



3.0 Prediction of supersonic hydrogen flames.

The closure model developed in the previous chapter was applied to the prediction of super-

sonic hydrogen flames burning in coflowing stream of air. Tile flow configuration was a round

/-/2 jet with a coflowing stream of air at higher temperature than the fuel. The prediction

requires accurate initial data which will be discussed next.

3.1 Initial conditions.

The flow conditions of the first test case of Evans et al. (1978) are shown in Fig.1.

cul
31ene$

O.

Alr

nozzle

-InJectom.i
inside dlametec 0.006525 rn
outside diameter:. 0.009525 m

.,,__:.-?:.:;..,:,
"T - Vm_';':':

Air-Nozzle: I I
inside all.meter:. 0.0653 m

Fig.1 Flow geometry for the supersonic H2-air flame.

Cold hydrogen at TH, = 251K is injected at the axis of a circular supersonic air flow

generated by a convergent-divergent nozzle. The air temperature is given by T,,ir = 1495K.

This temperature is achieved by burning hydrogen upstream of the nozzle and then adding

oxygen to the hot products to produce Xo2 = 0.21 mole fraction corresponding to air. The

air flow contains, therefore, a high percentage of water as product of the heating 1)rocess

(XH2o = 0.281). The boundary conditions and the nozzle geometry are summarized in Table

1.



Exit condition ' H2-Jet Outer Jet

.'Vlacb Number

Temperatur, K

.Mean Velocity, m/s

Pressure, MPa

Mass Fraction

Ma , • 2.0 1.9
T • 251.0 1495.0

u,_ • 2432 1510

p • 0.1 0.1

Yhr, : 1.000 0.000

YO, : 0.000 0.241

YX, : 0.000 0.478

YH, o : 0.000 0.281

Table 1. Initial data.

The calculation of the turbulent nonprelnixed flame is carried out with the hybrid nieth(M

developed by ('lien and I{ollmann (1988). The first step in the solution procedure is the

calculation of the thermo-chemical properties, which are stored in a table for the later use in

the solution of the pdf equation. The results of this calculation were reported by Farshchi et

al. (1991). The next step is the set up of the initial (or entrance) conditions appropriate for

the first test case of Evans et a. (1978). The initial velocity profile is shown in Fig.2 where

the symbols indicate the initial location of the grid points.The Ha stream contains 30 grid

points and the coflowing air stream 18 points.

30O0-'_k,

Em/ l
2500--'

2000-

1500--
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Fig.2 Initial velocity profile.
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4.0 Results and comparison with experiments.

The thermo-chemical properties of the reacting mixture of H2 and air are determined from

the condition of chemical equilibrium constrained with pressure and internal ener,_y. This

assumption is unrealistic for many situations in supersonic flows, but it is the h>vgical first

step in the development of prediction models for such flows. The extension to chemical re>n-

equilibrium has been carried out for zero Math-number flames (see Chen and Kollnmnn. 1988.

1990) and, once the questions concerning compressibility effects on the turbulence structure

have been sorted out, the results obtained for zero *Iach-number flames can be applied to

supersonic flows.

The fuel considered in the present prediction was a mixture of hydrogen and nitrogen

(YH2 = 0.22335 and I',','2 = 0.77665, in order to raise the stoichiometric value of mixture

fraction from (,t = 0.0283 for pure hydrogen fuel to (,t = 0.113. The pure hydrogen case was

also considered but only results for the former case will be presented.

The pdf equation is solved using a stochastic sinmlation technique (see Pope, 1985 for

details) together with a second order closure model for the first and second order moments of

the velocity field (Dibble et al., 1986) including modifications accounting for compressibility

effects (Zeman, 1989) on the dissiaption rate based on direct simulation results by Lele (1989).

4.1 Parametric study of the compressibility model (26).

The compressibility model (26) represents the random passage of compression and expansion

waves passing the material point considered. The function f(Ma ) = ,'_I_ is an ad hoe model for

the unknown dependence of this model on the Math-number. It is clear from the consideration

of the low Mach-number limit that this function nmst be nonnegative and vanish as the

Math-number approaches zero. These two properties are obviously satisfied by this flmction.

The model (26) contains furthermore two constants co, and co.2 for which no infi_rmation is

available at this time. Hence two reference values cpl=l.o and co.z = 0.5 were chosen and a

systematic variation of the constants was carried out to learn how the solution depends on

them. The results for one of two sets of runs are presented in Fig.3 to Fig.16 varying the

constant cpl. There is only a limited amount of experimental data available in Evans et al.

(1978), which consist of Pitot pressure measurements and some composition information at

two cross sections. The Pitot pressure results at the first station ,r/D = 13.8 in Fig.3 shows

clearly that increasing the value of col leads to significant improvement. It should be noted.

however, that perfect agreement is not to be expected near the axis where the temperature of

the fuel is below the minimal temperature of T = 296K for which thermodynamic data were

available and the equilibrium relations could be established. The initial temeperature of the

fuel stream had to be set to this temperature and not the temperature of the experiments.

The profiles for the mean velocity (which is calculated using a second order closure model

solved parallel to the stochastic simulation procedure for the pdf equation) in F0g.4, the mean

density in Fig.5, the mean temperature in Fig.6, the mean internal energy in Fig. 7, the mean

mixture fraction in Fig.8 and the mean value for the relative rate of volume expansion D in

Fig.9 show the corresponding variation with. cpl. The mean value for D in Fig.9 is apparently

zero, with some numerical noise which is typical for stochastic simulation techniques, visible.

11



The results for the secondaxial station at ,r/D = 26.2 confirm the tendency that emerged

at the first staion. The agreement between the calculated and the measured Pitot pressure

in Fig.10 is quite good except near the axis for reasons explained above. Only the niean

temperature in Fig.13 and the mean density in Fig.12 show a strong dependence on cpl. The

mean dilation in Fig.16 is again close to zero indicating the there is no significant turning of

the mean streamlines occurring. The mean composition for fliel and oxidiser in Fig. 17 and

Fig.18 shows reasonable agreement between calculation and nieasurements.

4.2 Mean values and correlations.

The mean values for the scalar fields and the velocity field are presented at .r/D = 15.5

in Fig.19 to Fig.36. Pdf methods allow the calculation of any moment of the prot_abilistic

variables of the pdf and the order of the monient is only limited by numerical acc_lracy. The

mean values for the thermodynamic variables show that the mean internal energy (Fig.20)

is minimal at the axis since the enthalpy of fi:_rniation for the fuel is negative. Mean density

in Fig.21 and mean temperature in Fig.22 are similar to the results obtained for low Mach-

number jet flames (Chen and Kollmann, 1988). The mean pressure, however, is not constant

across the supersonic flame as can be seen in Fig.23. A small pressure depression at the

location of the flame is apparent and the pressure in the cold fuel is higher than the ambient

pressure. The mean velocity in Fig. 24 shows that at x/D = 15.5 most of the initial velocity

difference has been snloothed out and only small mean strain rates are present. The Reynolds

stress components in Fig.25 indicate the presence of two shear layers between the tim jet and

the coflowing air jet and the air jet and stagnant surrounding air. The mean dissipation rate

in Fig.26 reflects only the inner shear layer formed between fuel and coflowing air jets. The

correlations of thermodynamic variables have several interesting features, Mixture fraction

and internal energy are mostly negatively correlated (Fig.28) since the internal energy for the

fuel is negative but the mixture fraction for the fltel is maximal (unity), The correlations of

mixture fraction and density (Fig.29) and internal energy and density (Fig.32) change sign

over the cross section. The correlations with the relative rate of volume expansion are rather

small and rather noisy Fig.30, 33, 35 and 36).

4.3 One-dimensional pdfs.

The information on the various pdfs for the thermodynaniic scalars is contained in fig.37

to fig.56 at x/D = 15.5 for five radial stations. The pdf for mixture fraction in Fig.37 to

Fig.41 shows the change of sign of the skewness as the flow is traversed. The pdf of the

internal energy in Fig.42 to Fig.46 has a shape similar to the pdf of mixture fraction with the

opposite sign for the skewness. The pdf for density in Fig.47 to Fig.51 shows the appearance

of entrained heated air at radial stations greater than .r/D = 84 (Fig.49) which emerges as

spike around p = 0.23. The pdf of the relative rate of volume expansion in Fig. 52 to Fig.56 is

close to the Gaussian which due to the model equation (26) simulating an Ornstein-Uhlenbeck

process.

4.4 Two-dimensional pdfs.
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The effect of compressibility becomesapparent if two-dinlensional pdfs are considered. The
comparison of the one-dimensional pdfs for mixture fraction and internal energy (_r any
other thermodynamic variable exceptenthalpy, which is a linear function of mixture fraction
at M_ = 0.0, and mixture fraction) does not lead to unambigous conclusions, because the

local relation between those variables, that holds at zero Mach-number, is nonlinear. The

Ornstein-Uhlenbeck process described in chapter 2.4 as model for the random fluctuations of

the relative rate of volume expansion leads to a broadening of the pdf for thernlodynaniic

variables and mixture fraction, which would be related locally in incompressible flc_ws. The

pdf of mixture fraction and internal energy shows some broadening due to compressibility as

Fig.57 to Fig.61 prove. However, the pdf of density and mixture fraction in Fig.62 to Fig.66

exhibits a much more pronounced broadening in particular in shear layer between filel and

heated air at .r/D = 0.27 in Fig.62. The pdf of density and internal energy in Fig.67 to Fig.71

confirms this fact. The pdf containing the relative rate of volume expansion D as one of the

variables allow some insight into the properties of the model suggested in equation (26). The

pdfs for internal energy and D in Fig.72 to Fig.76 and in particular the pdfs for density and

d in Fig.77 to Fig.81 show that The statistics of those variables are not Gaussian but the

marginal pdf for D is close to Gaussian.

5.0 Conclusions.

It was shown that pdfs for three scalar variables describing the local thermodynamic state

in a compressible reacting flow can be determined as solutions of model equation that sim-

ulates the effects of convection, turbulent diffusion, chemical reactions and reversible and

irreversible compression and expansion processes occuring randomly in a turbulent flow at

high speed. The limited amount of experimental information does not allow to draw a final

conclusion concerning the accuracy of the calculations, but it is clear that pdf predictions

of compressible reacting flows are feasible. There are, however, several problems awaiting

solution. In particular the role of the fluctuating pressure containing several different modes

(acoustic mode, entropy mode) and the significance of chemical non-equilibrium need to be

investigated. Pdf methods are especially well suited for the latter because they allow rigorous

treatment of nonlinear and local processes.
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Fig. I9. Coaxial turbulent supersonic jet flame burning I'Ia with Nr. Mean mixture fraction

at z/D = 15.5 for cpl = 1.0 and cp2 = 0.5.
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Fig. 20. Coaxial turbulent supersonic jet flame burning H2 with air. Mean internal energy

at x/O "- 15.5 for cpl -- 1.0 and cpa = 0.5.
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Fig. 21. Coaxial turbulent supersonic jet flame burning H2 with air. Mean density at

x/D = 15.5 for cpl = 1.0 and Cp2 = 0.5.
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Fig. 22. Coaxial turbulent supersonic jet flame burning H2 with air.

x/D = 15.5 for col = 1.0 and co2 = 0.5.
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Fig. 23. Coaxial turbulent supersonic jet flame burning H2 with air.

z/D = 15.5 for cpl = 1.0 and %2 = 0.5.
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Fig. 24. Coaxial turbulent supersozfic jet flame burning H2 with a ii'. Mean velocity at

z/D = 15.5 for cpl = 1.0 and cp2 = 0.5.



O
,.z

I I i i i i 1o , 2 3 4 s _ 7 _ 9 ,_ 1'1 12
.,,g_[.].

Fig. 25. Coaxial turbulent supersonic jet flame I)urning H2 with air.

ponents at .r/D = 15.5 for col = 1.0 and co2 = 0.5.
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Fig. 26. Coaxial turl)ulent supersonic jet flame burning H.z with air..Mean Dissipati_n rate

at .r/D = 15.5 for cl, i = 1.0 and cp2 = 0.5.
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Fig. 27. Coaxial turbtflent supersonic jet flame burning H_ with air. Variance of mixture

fraction at x/D = 13.5 for cpl = 1.0 and co2 = 0.3.
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Fig. 28. Coaxial t,u'l)ulent ,_up,'z'sonic jet flame burning H2 with air. Covariance c,f mixt,tre

fraction and internal energy at .riD = 1_.5 for c01 = 1.0 and co2 = 0.TJ.
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Fig. 29. Coaxial turbulent supersoltic jet flame burning H2 with air. Covariance of mixture

fraction and density at .r/D = 15.5 for cpl = 1.0 and cp2 = 0.5.
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Fig. 32. Coaxial turl)ulent supersonic jet flame burning H.2 with air. Covariance (,f int,,rnal

energy and density at .r/D = 15.5 fi)r col = 1.0 and co, = 0.5.
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Fig. 34. Coaxial turl)ttlent supersonic jet flame l)ttrniug H2 with air.

.riD = 15.5 for el, l = 1.0 and c,,_ = 0.5.

1.6 1.8 2

Variance <,f <l<,ll>irx ar



ffl

! I

0 0.2 0.4 0.6 0.8 I I'.2 I'.4 I'.6 I'.8 2

•,,ejd .[--1.

Fig. 35. Coaxial t,_:!ndent supersonic jet flame burning H_ with air. (ovananc of density

and relative rate of vohune expansion at z/D = 1,5.5 for col = 1.0 and co2 = 0.5.
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Fig. 39. Coaxial turlmlent supersonic jet flame burning H2 with air. Pdf of mixtllre fraction

at ,r/D = 13.5 and c/D -- 0.84 for col = 1.0 and c02 = 0.,5.
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Fig. 43. Coa×ial turbulent supersonic jet flame burning H2 with air. Pdf of internal energy

at x/D = 13.3 and v/D = 0.35 for Cpl = 1.0 alld cp2 = 0.5.
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at z/D = 15.,3 and ,'tO = 0.84 for c,,t = 1.0 and cp2 = 0.,3.
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Fig. 47. Coaxial ttu'bulent supersonic jet flmne burning H,2 with air.

z/D = 15.5 and riD = 0.27 for cpl = 1.0 and cp2 = 0.5.
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Fig. 48. Coaxial turl)ulent super_()nic .jet ['lalZle ])lUlling H__ with air.

.r/D = 13.5 and r/D = 0.55 for col = 1.0 and %,a = 0.5.
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Fig. 49. Coaxial turbulent supersonic jet flame burning H_ with air.

x/D = 15.5 and r/D = 0.84 for cpl = 1.0 and cp2 = 0.5.
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Fig. 50. Coaxial turlmlent supors(mic jet flame burning H2 with air.

z/D = 15.5 and r'/D = 1.14 for cpl = 1.0 and co2 = 0.3.
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Fig. 51. Coaxial turbulent supersonic jet flame burning H2 with air.

x/D = 15.5 and riD = 1.42 for c01 = 1.0 and c02 = 0.5.
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Fig. 52. Coaxial turl)ulent Sul)ersonic jet lClam( , ])tU'lling H_, with air. Pdf of relative rate ()f

volume expansion at x/D = 15.5 and riD = 0.27 fi,r ct, 1 = 1.0 and c1,,..= 0.5.
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Fig. 53. Coaxial turbtflent supersonic jet flame burning H2 with air. Pdf of relative rate of

volume expansion at .r/D = 15.5 and r/D - 0.55 for cpl - 1.0 and cp_ = 0.5.
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Fig. 54. Coaxial turbul,'nt ,_upersonic jet flanle ])timing H.2 with air. Pdf of relatix'e rate' ,,f

volume expansion at .t'/D = 15.5 and r/D = 0.$4 for cpl - 1.0 and cp2 = 0.5.
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Fig. 55. Coaxial turbulent supersonic jet flame burning H2 with air. Pdf of relative rate of

volume expansion at .r/D = 15.5 and r/D = 1.14 for cpl = 1.0 and cp2 = 0.5.
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Fig. 57. Coaxial turlmlrnt supersonic jet flame 1turning H2 with air. Pdf of mixture fraction

and internal energy at .r/D = 15.3 and r/D = 0.27 for cpl = 1.0 and cp2 = 0.3.



Fig. 58. Coaxi_,lt,ul>tlleut supersonicjet flame l>tuuiug H2 with air." Pdf of mixt_l,'e f,'_¢'ti,,1_
and interred energy at .,'/D = 15.5and r/D = 0.55 for c01 = 1.0 and cp2 = 0.5.
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Fig. 59. Coaxial rurl_ulellt s_q)ersotlic jrt flame 1),u'lling H, with air. Pdf of mixture fracriotl

and internal ellergy at .riD = 15.5 and riD = 0.$4 for opt = 1.0 and cp.2 = 0.5.
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Fig. 60. Coaxial t,u'l_tle'nt s,Lpers_mic jet flame lmrning H2 with air. Pdf of mixture fraction

and internal energy at r,/D = l_5.5 and r/D = 1.14 for c01 = 1.0 and co: = 0.5.



Fig. 61. Coaxial tm'bulent _ut)ersoni¢ jet flame Burning H_ with air. Pdf of mixture fr_ction

and internal energy at ,r/D = 13.3 and r/D = 1.42 for Cpl = 1.0 and cp_ = 0.3.



Fig. 62. Coaxial turbulent supersonicjet flame burning H2 with air. Pdf of mixture fraction
and density at ,r/D = 15.5 and r/D = 0.27 for cpl = 1.0 and cp2 = 0.5.



Fig. 63. Coaxial turbulent supersonicjet flame burning H2 with air. P(if of mixture fracti_,n

and density at .r/D = 15.5 and r/D = 0.55 for cpl = 1.0 and c02 = 0.5.



Fig. 64. Coaxial turbulent ,_uperspnicjet flame burning He with air. Pdf of mixture fraction
and density at .r/D = 15.5and r/D = 0.84 for c01 = 1.0 and co_ = 0.5.



Fig. 65. Coaxial t url)ulent supersonicjet flanie l)uI'ning H2 with air. Pdf of mixture fraction
and density at .riD = 15.5and riD = 1.14 for c/,l = 1.0 and cp2 = 0.5.



Fig. 66. Coaxial turbulent supersonic jet flame burning H2 with air. Pdi" of mixture fraction

and density at .r/D = 15.5 and r/D = 1.42 for cpl = 1.0 and cp2 = 0.5.
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Fig. 67. Coaxial turbulent supersouic jet flame burning H_ with air. Pdf of iuternal enero_v

and density at .r/D = 15.<5 and r/D = 0.27 for c,,1 = 1.0 and cp2 = 0.5.
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Fig. 69. Coaxial turlmlent supersonic jet flame bmning H_ with air. Pdf of internal energy

and density at .r/D = 15.7) and ,'/D = 0.84 for col = 1.O and co2 = 0.7).



Fig. 70. Coaxial turbulent supersonic jet flame burning H2 with air. Pdf of internal _-netgy

and density at .rid = 15.5 and riD = 1.14 fi_r col = 1.0 and co2 = 0.5.
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Fig. 71. Coaxial turbulent supersonic jet flame burning H,2 with air. Pdf of internal energy

and density at ,r/D = 15.5 and r/D = 1.42 for cpl = 1.0 and c02 = 0.5.



Fig. 72. Coaxial turbulent supersonicjet flame burning H.2with air. Pdf of internal energy
and relative rate of volmne expansion at .r/D = 15.5 and r/D = 0.27 for coz = 1.0 and

co2 = 0.5.
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Fig. 73. Coaxial turbulent supersonic jet flame burning H2 with air. Pdf of internal energy

and relative rate ,)f vohune expansion at. ,r/D = 13.,5 and r/D = 0.55 for c01 = 1.0 and

co2 = 0.5.
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Fig. 74. Coaxial turbulent ,_ul)ersonic jet flame burning H2 with air. Pdf of internal energy

and relative rate of vc_lume expansion at x/D = 15.5 anti r/D = 0.84 for cpl = 1.0 and

cp2 = 0.5.



Fig. 75. Coaxial turbulent supersonicjet flame burning H_ with air. Pdf of internal enero_y

and relative rate of volume expansion at x/D = 15.5 and r/D = 1.14 for cpl = 1.0 and
cp2 = 0.5.



O

O

O

Fig. 76. Coaxial turbtdent supersonic jet flame burning H2 with air. Pdf of internal energy

and relative rate of volmne expansion at .r/D = 15.3 and r/D = 1.42 for cpl = 1.0 and

cp2 = 0.5.
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Fig. 77. Coaxial turl)ulent supersonic jet flame burning H2 with air. Pdf of density and

relative rate of volume _,xpansion at ,rid = 15.3 and r/D = 0.27 for col = 1.0 and c_ = 0..5.
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Fig. 78. Coaxial turbulent supersonic jet flame burning H2 with air. "Pdf of density and

relative rate of volume expansion at ,rid = 15.5 and rid = 0.55 for cpl = 1.0 and cp2 = 0.5.
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Fig. 79. Coaxial turbulent supersonic jet flame burning H2 with air. Pdf of density and

relative rate of volume expansion at x/D = 15.5 and r/D = 0.84 for col = 1.0 and co_ = 0.5.
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Fig. 80. Coaxial turbulent supersonic jet flame burning tt2 with air. Pdf of density and

relative rate of volume expansion at ,r/D = 15.5 and r/D = 1.14 for cpl = 1.0 and cp2 = 0.5.



Fig. 81. Coaxial turbulent supersonic jet flame burning H2 with air. Pdf of density and

relative rate of volume ext)ansion at x/D = 15.5 and r/D = 1.42 for col = 1.0 and co.2 = 0.5.


